Viterbi Algorithm を使用したい Python プロジェクトを行っています。Viterbi アルゴリズムの完全な Python 実装を知っている人はいますか? ウィキペディアにあるものの正しさはトークページで疑問視されているようです。誰もポインターを持っていますか?
6 に答える
人工知能のサンプル リポジトリで次のコードを見つけました: A Modern Approach 。このようなものをお探しですか?
def viterbi_segment(text, P):
"""Find the best segmentation of the string of characters, given the
UnigramTextModel P."""
# best[i] = best probability for text[0:i]
# words[i] = best word ending at position i
n = len(text)
words = [''] + list(text)
best = [1.0] + [0.0] * n
## Fill in the vectors best, words via dynamic programming
for i in range(n+1):
for j in range(0, i):
w = text[j:i]
if P[w] * best[i - len(w)] >= best[i]:
best[i] = P[w] * best[i - len(w)]
words[i] = w
## Now recover the sequence of best words
sequence = []; i = len(words)-1
while i > 0:
sequence[0:0] = [words[i]]
i = i - len(words[i])
## Return sequence of best words and overall probability
return sequence, best[-1]
うーん、私は投稿できます。きれいではありませんが、説明が必要な場合はお知らせください。私はこれを比較的最近、特に品詞のタグ付けのために書きました。
class Trellis:
trell = []
def __init__(self, hmm, words):
self.trell = []
temp = {}
for label in hmm.labels:
temp[label] = [0,None]
for word in words:
self.trell.append([word,copy.deepcopy(temp)])
self.fill_in(hmm)
def fill_in(self,hmm):
for i in range(len(self.trell)):
for token in self.trell[i][1]:
word = self.trell[i][0]
if i == 0:
self.trell[i][1][token][0] = hmm.e(token,word)
else:
max = None
guess = None
c = None
for k in self.trell[i-1][1]:
c = self.trell[i-1][1][k][0] + hmm.t(k,token)
if max == None or c > max:
max = c
guess = k
max += hmm.e(token,word)
self.trell[i][1][token][0] = max
self.trell[i][1][token][1] = guess
def return_max(self):
tokens = []
token = None
for i in range(len(self.trell)-1,-1,-1):
if token == None:
max = None
guess = None
for k in self.trell[i][1]:
if max == None or self.trell[i][1][k][0] > max:
max = self.trell[i][1][k][0]
token = self.trell[i][1][k][1]
guess = k
tokens.append(guess)
else:
tokens.append(token)
token = self.trell[i][1][token][1]
tokens.reverse()
return tokens
Wikipediaの Viterbi の疑似実装を修正しました。viterbi_path.m
最初の (間違った) バージョンから、どこが間違っているのかを理解するのにしばらく時間がかかりましたが、MatLab HMM ツールボックスでの Kevin Murphy の実装のおかげで、最終的にそれを管理できました。
変数を持つ HMM オブジェクトのコンテキストでは、次のようになります。
hmm = HMM()
hmm.priors = np.array([0.5, 0.5]) # pi = prior probs
hmm.transition = np.array([[0.75, 0.25], # A = transition probs. / 2 states
[0.32, 0.68]])
hmm.emission = np.array([[0.8, 0.1, 0.1], # B = emission (observation) probs. / 3 obs modes
[0.1, 0.2, 0.7]])
Viterbi (ベスト パス) アルゴリズムを実行する Python 関数は次のとおりです。
def viterbi (self,observations):
"""Return the best path, given an HMM model and a sequence of observations"""
# A - initialise stuff
nSamples = len(observations[0])
nStates = self.transition.shape[0] # number of states
c = np.zeros(nSamples) #scale factors (necessary to prevent underflow)
viterbi = np.zeros((nStates,nSamples)) # initialise viterbi table
psi = np.zeros((nStates,nSamples)) # initialise the best path table
best_path = np.zeros(nSamples); # this will be your output
# B- appoint initial values for viterbi and best path (bp) tables - Eq (32a-32b)
viterbi[:,0] = self.priors.T * self.emission[:,observations(0)]
c[0] = 1.0/np.sum(viterbi[:,0])
viterbi[:,0] = c[0] * viterbi[:,0] # apply the scaling factor
psi[0] = 0;
# C- Do the iterations for viterbi and psi for time>0 until T
for t in range(1,nSamples): # loop through time
for s in range (0,nStates): # loop through the states @(t-1)
trans_p = viterbi[:,t-1] * self.transition[:,s]
psi[s,t], viterbi[s,t] = max(enumerate(trans_p), key=operator.itemgetter(1))
viterbi[s,t] = viterbi[s,t]*self.emission[s,observations(t)]
c[t] = 1.0/np.sum(viterbi[:,t]) # scaling factor
viterbi[:,t] = c[t] * viterbi[:,t]
# D - Back-tracking
best_path[nSamples-1] = viterbi[:,nSamples-1].argmax() # last state
for t in range(nSamples-1,0,-1): # states of (last-1)th to 0th time step
best_path[t-1] = psi[best_path[t],t]
return best_path
これは古い質問ですが、私のアプリケーションには特定の状態が観察されていないため、他の回答はどれも私が必要としていたものではありませんでした。
@Rhubarb に倣って、Kevin Murphey のMatlab 実装(「参考文献」を参照viterbi_path.m
) も再実装しましたが、オリジナルに近づけました。簡単なテストケースも含めました。
import numpy as np
def viterbi_path(prior, transmat, obslik, scaled=True, ret_loglik=False):
'''Finds the most-probable (Viterbi) path through the HMM state trellis
Notation:
Z[t] := Observation at time t
Q[t] := Hidden state at time t
Inputs:
prior: np.array(num_hid)
prior[i] := Pr(Q[0] == i)
transmat: np.ndarray((num_hid,num_hid))
transmat[i,j] := Pr(Q[t+1] == j | Q[t] == i)
obslik: np.ndarray((num_hid,num_obs))
obslik[i,t] := Pr(Z[t] | Q[t] == i)
scaled: bool
whether or not to normalize the probability trellis along the way
doing so prevents underflow by repeated multiplications of probabilities
ret_loglik: bool
whether or not to return the log-likelihood of the best path
Outputs:
path: np.array(num_obs)
path[t] := Q[t]
'''
num_hid = obslik.shape[0] # number of hidden states
num_obs = obslik.shape[1] # number of observations (not observation *states*)
# trellis_prob[i,t] := Pr((best sequence of length t-1 goes to state i), Z[1:(t+1)])
trellis_prob = np.zeros((num_hid,num_obs))
# trellis_state[i,t] := best predecessor state given that we ended up in state i at t
trellis_state = np.zeros((num_hid,num_obs), dtype=int) # int because its elements will be used as indicies
path = np.zeros(num_obs, dtype=int) # int because its elements will be used as indicies
trellis_prob[:,0] = prior * obslik[:,0] # element-wise mult
if scaled:
scale = np.ones(num_obs) # only instantiated if necessary to save memory
scale[0] = 1.0 / np.sum(trellis_prob[:,0])
trellis_prob[:,0] *= scale[0]
trellis_state[:,0] = 0 # arbitrary value since t == 0 has no predecessor
for t in xrange(1, num_obs):
for j in xrange(num_hid):
trans_probs = trellis_prob[:,t-1] * transmat[:,j] # element-wise mult
trellis_state[j,t] = trans_probs.argmax()
trellis_prob[j,t] = trans_probs[trellis_state[j,t]] # max of trans_probs
trellis_prob[j,t] *= obslik[j,t]
if scaled:
scale[t] = 1.0 / np.sum(trellis_prob[:,t])
trellis_prob[:,t] *= scale[t]
path[-1] = trellis_prob[:,-1].argmax()
for t in range(num_obs-2, -1, -1):
path[t] = trellis_state[(path[t+1]), t+1]
if not ret_loglik:
return path
else:
if scaled:
loglik = -np.sum(np.log(scale))
else:
p = trellis_prob[path[-1],-1]
loglik = np.log(p)
return path, loglik
if __name__=='__main__':
# Assume there are 3 observation states, 2 hidden states, and 5 observations
priors = np.array([0.5, 0.5])
transmat = np.array([
[0.75, 0.25],
[0.32, 0.68]])
emmat = np.array([
[0.8, 0.1, 0.1],
[0.1, 0.2, 0.7]])
observations = np.array([0, 1, 2, 1, 0], dtype=int)
obslik = np.array([emmat[:,z] for z in observations]).T
print viterbi_path(priors, transmat, obslik) #=> [0 1 1 1 0]
print viterbi_path(priors, transmat, obslik, scaled=False) #=> [0 1 1 1 0]
print viterbi_path(priors, transmat, obslik, ret_loglik=True) #=> (array([0, 1, 1, 1, 0]), -7.776472586614755)
print viterbi_path(priors, transmat, obslik, scaled=False, ret_loglik=True) #=> (array([0, 1, 1, 1, 0]), -8.0120386579275227)
この実装では、放出確率を直接使用するのではなく、変数を使用することに注意してくださいobslik
。一般にemissions[i,j] := Pr(observed_state == j | hidden_state == i)
、特定の観察された状態i
に対して、 を作りemissions.shape == (num_hidden_states, num_obs_states)
ます。
ただし、シーケンス が与えられた場合observations[t] := observation at time t
、ビタビ アルゴリズムに必要なのは、各隠れ状態の観測の可能性だけです。したがって、obslik[i,t] := Pr(observations[t] | hidden_state == i)
. 観測された状態の実際の値は必要ありません。