シンプルで汎用的なテーブル構造を PostgreSQL に実装しています (8.3; 9.1 は近未来です)。これは非常に単純で一般的な実装のようです。要約すると、次のようになります。
events_event_types
(
# this table holds some 50 rows
id bigserial # PK
"name" character varying(255)
)
events_events
(
# this table holds some 15M rows
id bigserial # PK
datetime timestamp with time zone
eventtype_id bigint # FK to events_event_types.id
)
CREATE TABLE events_eventdetails
(
# this table holds some 65M rows
id bigserial # PK
keyname character varying(255)
"value" text
event_id bigint # FK to events_events.id
)
events_events および events_eventdetails テーブルの一部の行は次のようになります。
events_events | events_eventdetails
id datetime eventtype_id | id keyname value event_id
----------------------------|-------------------------------------------
100 ... 10 | 1000 transactionId 9774ae16-... 100
| 1001 someKey some value 100
200 ... 20 | 2000 transactionId 9774ae16-... 200
| 2001 reductionId 123 200
| 2002 reductionId 456 200
300 ... 30 | 3000 transactionId 9774ae16-... 300
| 2001 customerId 234 300
| 2001 companyId 345 300
events_events 行 100 と 200 と 300 を 1 つの結果セットにまとめて高速で返す「ソリューション」がどうしても必要です。reductionId=123 を要求されたとき、customerId=234 を要求されたとき、または companyId=345 を要求されたとき。(これらの基準の AND の組み合わせに興味があるかもしれませんが、それが本質的な目標ではありません。) この時点で問題があるかどうかはわかりませんが、結果セットは datetime 範囲と eventtype_id (IN リスト) でフィルター可能であり、LIMIT が与えられる必要があります。
これは次のいずれかである可能性があるため、「解決策」を求めます。
- 単一のクエリ
- 2 つの小さなクエリ (中間結果が常に十分に小さい限り。私はこのアプローチに従い、大量 (~20k) の関連付けられたトランザクション (transactionId) を持つ企業 (companyId) で行き詰まりました)
- 微妙な再設計 (非正規化など)
これは新しい質問ではありません。私たちは何ヶ月にもわたって 3 つのアプローチすべてを試してきたので (これらのクエリで煩わされることはありません)、パフォーマンスではすべて失敗します。解は <<<1 秒で返されます。以前の試みは約かかりました。せいぜい10秒。
私は本当に助けていただければ幸いです-私は今途方に暮れています...
2 つの小さなクエリ アプローチは、次のようになります。
クエリ 1:
SELECT Substring(details2_transvalue.VALUE, 0, 32)
FROM events_eventdetails details2_transvalue
JOIN events_eventdetails compdetails ON details2_transvalue.event_id = compdetails.event_id
AND compdetails.keyname = 'companyId'
AND Substring(compdetails.VALUE, 0, 32) = '4'
AND details2_transvalue.keyname = 'transactionId'
クエリ 2:
SELECT events1.*
FROM events_events events1
JOIN events_eventdetails compDetails ON events1.id = compDetails.event_id
AND compDetails.keyname='companyId'
AND substring(compDetails.value,0,32)='4'
WHERE events1.eventtype_id IN (...)
UNION
SELECT events2.*
FROM events_events events2
JOIN events_eventdetails details2_transKey ON events2.id = details2_transKey.event_id
AND details2_transKey.keyname='transactionId'
AND substring(details2_transKey.value,0,32) IN ( -- result of query 1 goes here -- )
WHERE events2.eventtype_id IN (...)
ORDER BY dateTime DESC LIMIT 50
クエリ 1 で返されるセットが大きいため、このパフォーマンスは低下します。
ご覧のとおり、events_eventdetails テーブルの値は常に長さ 32 の部分文字列として表現され、そのようにインデックスが付けられています。keyname、event_id、event_id + keyname、keyname + 長さ 32 の部分文字列の追加のインデックス。
これはPostgreSQL 9.1のアプローチです-私は公式にそのプラットフォームを自由に使えるわけではありませんが:
WITH companyevents AS (
SELECT events1.*
FROM events_events events1
JOIN events_eventdetails compDetails
ON events1.id = compDetails.event_id
AND compDetails.keyname='companyId'
AND substring(compDetails.value,0,32)=' -- my desired companyId -- '
WHERE events1.eventtype_id in (...)
ORDER BY dateTime DESC
LIMIT 50
)
SELECT * from events_events
WHERE transaction_id IN (SELECT transaction_id FROM companyevents)
OR id IN (SELECT id FROM companyevents)
AND eventtype_id IN (...)
ORDER BY dateTime DESC
LIMIT 250;
28228 個のトランザクション ID を持つ companyId のクエリ プランは次のとおりです。
Limit (cost=7545.99..7664.33 rows=250 width=130) (actual time=210.100..3026.267 rows=50 loops=1)
CTE companyevents
-> Limit (cost=7543.62..7543.74 rows=50 width=130) (actual time=206.994..207.020 rows=50 loops=1)
-> Sort (cost=7543.62..7544.69 rows=429 width=130) (actual time=206.993..207.005 rows=50 loops=1)
Sort Key: events1.datetime
Sort Method: top-N heapsort Memory: 23kB
-> Nested Loop (cost=10.02..7529.37 rows=429 width=130) (actual time=0.093..178.719 rows=28228 loops=1)
-> Append (cost=10.02..1140.62 rows=657 width=8) (actual time=0.082..27.594 rows=28228 loops=1)
-> Bitmap Heap Scan on events_eventdetails compdetails (cost=10.02..394.47 rows=97 width=8) (actual time=0.021..0.021 rows=0 loops=1)
Recheck Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '4'::text))
-> Bitmap Index Scan on events_eventdetails_substring_ind (cost=0.00..10.00 rows=97 width=0) (actual time=0.019..0.019 rows=0 loops=1)
Index Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '4'::text))
-> Index Scan using events_eventdetails_companyid_substring_ind on events_eventdetails_companyid compdetails (cost=0.00..746.15 rows=560 width=8) (actual time=0.061..18.655 rows=28228 loops=1)
Index Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '4'::text))
-> Index Scan using events_events_pkey on events_events events1 (cost=0.00..9.71 rows=1 width=130) (actual time=0.004..0.004 rows=1 loops=28228)
Index Cond: (id = compdetails.event_id)
Filter: (eventtype_id = ANY ('{103,106,107,110,45,34,14,87,58,78,7,76,42,11,25,57,98,37,30,35,33,49,52,29,74,28,85,59,51,65,66,18,13,86,75,6,44,38,43,94,56,95,96,71,50,81,90,89,16,17,4,88,79,77,68,97,92,67,72,53,2,10,31,32,80,111,104,93,26,8,61,5,73,70,63,20,60,40,41,23,22,48,36,108,99,64,62,55,69,19,46,47,15,54,100,101,27,21,12,102,105,109,112,113,114,115,116,119,120,121,122,123,124,9,127,24,130,132,129,125,131,118,117,133,134}'::bigint[]))
-> Index Scan Backward using events_events_datetime_ind on events_events (cost=2.25..1337132.75 rows=2824764 width=130) (actual time=210.100..3026.255 rows=50 loops=1)
Filter: ((hashed SubPlan 2) OR ((hashed SubPlan 3) AND (eventtype_id = ANY ('{103,106,107,110,45,34,14,87,58,78,7,76,42,11,25,57,98,37,30,35,33,49,52,29,74,28,85,59,51,65,66,18,13,86,75,6,44,38,43,94,56,95,96,71,50,81,90,89,16,17,4,88,79,77,68,97,92,67,72,53,2,10,31,32,80,111,104,93,26,8,61,5,73,70,63,20,60,40,41,23,22,48,36,108,99,64,62,55,69,19,46,47,15,54,100,101,27,21,12,102,105,109,112,113,114,115,116,119,120,121,122,123,124,9,127,24,130,132,129,125,131,118,117,133,134}'::bigint[]))))
SubPlan 2
-> CTE Scan on companyevents (cost=0.00..1.00 rows=50 width=90) (actual time=206.998..207.071 rows=50 loops=1)
SubPlan 3
-> CTE Scan on companyevents (cost=0.00..1.00 rows=50 width=8) (actual time=0.001..0.026 rows=50 loops=1)
Total runtime: 3026.410 ms
288 個のトランザクション ID を持つ companyId のクエリ プランは次のとおりです。
Limit (cost=7545.99..7664.33 rows=250 width=130) (actual time=30.976..3790.362 rows=54 loops=1)
CTE companyevents
-> Limit (cost=7543.62..7543.74 rows=50 width=130) (actual time=9.263..9.290 rows=50 loops=1)
-> Sort (cost=7543.62..7544.69 rows=429 width=130) (actual time=9.263..9.272 rows=50 loops=1)
Sort Key: events1.datetime
Sort Method: top-N heapsort Memory: 24kB
-> Nested Loop (cost=10.02..7529.37 rows=429 width=130) (actual time=0.071..8.195 rows=1025 loops=1)
-> Append (cost=10.02..1140.62 rows=657 width=8) (actual time=0.060..1.348 rows=1025 loops=1)
-> Bitmap Heap Scan on events_eventdetails compdetails (cost=10.02..394.47 rows=97 width=8) (actual time=0.021..0.021 rows=0 loops=1)
Recheck Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '5'::text))
-> Bitmap Index Scan on events_eventdetails_substring_ind (cost=0.00..10.00 rows=97 width=0) (actual time=0.019..0.019 rows=0 loops=1)
Index Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '5'::text))
-> Index Scan using events_eventdetails_companyid_substring_ind on events_eventdetails_companyid compdetails (cost=0.00..746.15 rows=560 width=8) (actual time=0.039..1.006 rows=1025 loops=1)
Index Cond: (((keyname)::text = 'companyId'::text) AND ("substring"(value, 0, 32) = '5'::text))
-> Index Scan using events_events_pkey on events_events events1 (cost=0.00..9.71 rows=1 width=130) (actual time=0.005..0.006 rows=1 loops=1025)
Index Cond: (id = compdetails.event_id)
Filter: (eventtype_id = ANY ('{103,106,107,110,45,34,14,87,58,78,7,76,42,11,25,57,98,37,30,35,33,49,52,29,74,28,85,59,51,65,66,18,13,86,75,6,44,38,43,94,56,95,96,71,50,81,90,89,16,17,4,88,79,77,68,97,92,67,72,53,2,10,31,32,80,111,104,93,26,8,61,5,73,70,63,20,60,40,41,23,22,48,36,108,99,64,62,55,69,19,46,47,15,54,100,101,27,21,12,102,105,109,112,113,114,115,116,119,120,121,122,123,124,9,127,24,130,132,129,125,131,118,117,133,134}'::bigint[]))
-> Index Scan Backward using events_events_datetime_ind on events_events (cost=2.25..1337132.75 rows=2824764 width=130) (actual time=30.975..3790.332 rows=54 loops=1)
Filter: ((hashed SubPlan 2) OR ((hashed SubPlan 3) AND (eventtype_id = ANY ('{103,106,107,110,45,34,14,87,58,78,7,76,42,11,25,57,98,37,30,35,33,49,52,29,74,28,85,59,51,65,66,18,13,86,75,6,44,38,43,94,56,95,96,71,50,81,90,89,16,17,4,88,79,77,68,97,92,67,72,53,2,10,31,32,80,111,104,93,26,8,61,5,73,70,63,20,60,40,41,23,22,48,36,108,99,64,62,55,69,19,46,47,15,54,100,101,27,21,12,102,105,109,112,113,114,115,116,119,120,121,122,123,124,9,127,24,130,132,129,125,131,118,117,133,134}'::bigint[]))))
SubPlan 2
-> CTE Scan on companyevents (cost=0.00..1.00 rows=50 width=90) (actual time=9.266..9.327 rows=50 loops=1)
SubPlan 3
-> CTE Scan on companyevents (cost=0.00..1.00 rows=50 width=8) (actual time=0.001..0.019 rows=50 loops=1)
Total runtime: 3796.736 ms
3 秒/4 秒の場合、これはまったく悪くありませんが、それでも 100 倍以上遅すぎます。また、これは関連するハードウェアにはありませんでした。それにもかかわらず、痛みがどこにあるかを示す必要があります。
解決策に発展する可能性のあるものを次に示します。
表を追加しました:
events_transaction_helper
(
event_id bigint not null
transactionid character varying(36) not null
keyname character varying(255) not null
value bigint not null
# index on keyname, value
)
私は今、このテーブルを「手動で」入力しましたが、具体化されたビューの実装がそのトリックを行います。以下のクエリによく従います。
SELECT tr.event_id, tr.value AS transactionid, det.keyname, det.value AS value
FROM events_eventdetails tr
JOIN events_eventdetails det ON det.event_id = tr.event_id
WHERE tr.keyname = 'transactionId'
AND det.keyname
IN ('companyId', 'reduction_id', 'customer_id');
events_events テーブルに次の列を追加しました。
transaction_id character varying(36) null
この新しい列は次のように入力されます。
update events_events
set transaction_id =
(select value from events_eventdetails
where keyname='transactionId'
and event_id=events_events.id);
現在、次のクエリは一貫して 15 ミリ秒未満で返されます。
explain analyze select * from events_events
where transactionId in
(select distinct transactionid
from events_transaction_helper
WHERE keyname='companyId' and value=5)
and eventtype_id in (...)
order by datetime desc limit 250;
Limit (cost=5075.23..5075.85 rows=250 width=130) (actual time=8.901..9.028 rows=250 loops=1)
-> Sort (cost=5075.23..5077.19 rows=785 width=130) (actual time=8.900..8.953 rows=250 loops=1)
Sort Key: events_events.datetime
Sort Method: top-N heapsort Memory: 81kB
-> Nested Loop (cost=57.95..5040.04 rows=785 width=130) (actual time=0.928..8.268 rows=524 loops=1)
-> HashAggregate (cost=52.30..52.42 rows=12 width=37) (actual time=0.895..0.991 rows=276 loops=1)
-> Subquery Scan on "ANY_subquery" (cost=52.03..52.27 rows=12 width=37) (actual time=0.558..0.757 rows=276 loops=1)
-> HashAggregate (cost=52.03..52.15 rows=12 width=37) (actual time=0.556..0.638 rows=276 loops=1)
-> Index Scan using testmaterializedviewkeynamevalue on events_transaction_helper (cost=0.00..51.98 rows=22 width=37) (actual time=0.068..0.404 rows=288 loops=1)
Index Cond: (((keyname)::text = 'companyId'::text) AND (value = 5))
-> Bitmap Heap Scan on events_events (cost=5.65..414.38 rows=100 width=130) (actual time=0.023..0.024 rows=2 loops=276)
Recheck Cond: ((transactionid)::text = ("ANY_subquery".transactionid)::text)
Filter: (eventtype_id = ANY ('{103,106,107,110,45,34,14,87,58,78,7,76,42,11,25,57,98,37,30,35,33,49,52,29,74,28,85,59,51,65,66,18,13,86,75,6,44,38,43,94,56,95,96,71,50,81,90,89,16,17,4,88,79,77,68,97,92,67,72,53,2,10,31,32,80,111,104,93,26,8,61,5,73,70,63,20,60,40,41,23,22,48,36,108,99,64,62,55,69,19,46,47,15,54,100,101,27,21,12,102,105,109,112,113,114,115,116,119,120,121,122,123,124,9,127,24,130,132,129,125,131,118,117,133,134}'::bigint[]))
-> Bitmap Index Scan on testtransactionid (cost=0.00..5.63 rows=100 width=0) (actual time=0.020..0.020 rows=2 loops=276)
Index Cond: ((transactionid)::text = ("ANY_subquery".transactionid)::text)
Total runtime: 9.122 ms
後で確認して、これが実際に実行可能な解決策であるかどうかをお知らせします:)