再帰的特徴ランク付け機能iscikit-learn(http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV)を使用しています。ただし、推定量としてLDA分類器を使用したいと思います。私はこのコードを持っています:
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = LDA()
#selector = RFE(estimator,5,step = 1)
selector = RFECV(estimator, cv = 5,step = 1)
selector=selector.fit(X,y)
print selector.support_
print selector.ranking_
このコードを実行すると、エラーが発生します。RFEで同じコードを実行すれば、問題ありません。または、SVR分類子を使用すると、問題なく機能します。私の質問は、メソッドLDA()を呼び出したときに分類器を取得しているかどうかです。RFECVは「推定量」の分類器を使用して特徴をランク付けします。LDAの問題は何ですか?