回転した四角形が他の四角形と交差するかどうかを確認する方法を誰かが説明できますか?
30262 次
14 に答える
38
- 両方のポリゴンの各エッジについて、区切り線として使用できるかどうかを確認します。もしそうなら、あなたは終わりです: 交差点はありません。
- 分離線が見つからない場合は、交差点があります。
/// Checks if the two polygons are intersecting.
bool IsPolygonsIntersecting(Polygon a, Polygon b)
{
foreach (var polygon in new[] { a, b })
{
for (int i1 = 0; i1 < polygon.Points.Count; i1++)
{
int i2 = (i1 + 1) % polygon.Points.Count;
var p1 = polygon.Points[i1];
var p2 = polygon.Points[i2];
var normal = new Point(p2.Y - p1.Y, p1.X - p2.X);
double? minA = null, maxA = null;
foreach (var p in a.Points)
{
var projected = normal.X * p.X + normal.Y * p.Y;
if (minA == null || projected < minA)
minA = projected;
if (maxA == null || projected > maxA)
maxA = projected;
}
double? minB = null, maxB = null;
foreach (var p in b.Points)
{
var projected = normal.X * p.X + normal.Y * p.Y;
if (minB == null || projected < minB)
minB = projected;
if (maxB == null || projected > maxB)
maxB = projected;
}
if (maxA < minB || maxB < minA)
return false;
}
}
return true;
}
詳細については、次の記事を参照してください: 2D ポリゴンの衝突検出 - コード プロジェクト
注意:このアルゴリズムは、時計回りまたは反時計回りの順序で指定された凸多角形に対してのみ機能します。
于 2012-06-09T22:35:02.290 に答える
34
JavaScript では、まったく同じアルゴリズムが (便宜上) あります。
/**
* Helper function to determine whether there is an intersection between the two polygons described
* by the lists of vertices. Uses the Separating Axis Theorem
*
* @param a an array of connected points [{x:, y:}, {x:, y:},...] that form a closed polygon
* @param b an array of connected points [{x:, y:}, {x:, y:},...] that form a closed polygon
* @return true if there is any intersection between the 2 polygons, false otherwise
*/
function doPolygonsIntersect (a, b) {
var polygons = [a, b];
var minA, maxA, projected, i, i1, j, minB, maxB;
for (i = 0; i < polygons.length; i++) {
// for each polygon, look at each edge of the polygon, and determine if it separates
// the two shapes
var polygon = polygons[i];
for (i1 = 0; i1 < polygon.length; i1++) {
// grab 2 vertices to create an edge
var i2 = (i1 + 1) % polygon.length;
var p1 = polygon[i1];
var p2 = polygon[i2];
// find the line perpendicular to this edge
var normal = { x: p2.y - p1.y, y: p1.x - p2.x };
minA = maxA = undefined;
// for each vertex in the first shape, project it onto the line perpendicular to the edge
// and keep track of the min and max of these values
for (j = 0; j < a.length; j++) {
projected = normal.x * a[j].x + normal.y * a[j].y;
if (isUndefined(minA) || projected < minA) {
minA = projected;
}
if (isUndefined(maxA) || projected > maxA) {
maxA = projected;
}
}
// for each vertex in the second shape, project it onto the line perpendicular to the edge
// and keep track of the min and max of these values
minB = maxB = undefined;
for (j = 0; j < b.length; j++) {
projected = normal.x * b[j].x + normal.y * b[j].y;
if (isUndefined(minB) || projected < minB) {
minB = projected;
}
if (isUndefined(maxB) || projected > maxB) {
maxB = projected;
}
}
// if there is no overlap between the projects, the edge we are looking at separates the two
// polygons, and we know there is no overlap
if (maxA < minB || maxB < minA) {
CONSOLE("polygons don't intersect!");
return false;
}
}
}
return true;
};
これが誰かに役立つことを願っています。
于 2012-09-13T21:18:36.210 に答える
4
Oren Becker によって設計された、回転した長方形とフォームの交差を検出する方法を確認してください。
struct _Vector2D
{
float x, y;
};
// C:center; S: size (w,h); ang: in radians,
// rotate the plane by [-ang] to make the second rectangle axis in C aligned (vertical)
struct _RotRect
{
_Vector2D C;
_Vector2D S;
float ang;
};
次の関数を呼び出すと、回転した 2 つの長方形が交差するかどうかが返されます。
// Rotated Rectangles Collision Detection, Oren Becker, 2001
bool check_two_rotated_rects_intersect(_RotRect * rr1, _RotRect * rr2)
{
_Vector2D A, B, // vertices of the rotated rr2
C, // center of rr2
BL, TR; // vertices of rr2 (bottom-left, top-right)
float ang = rr1->ang - rr2->ang, // orientation of rotated rr1
cosa = cos(ang), // precalculated trigonometic -
sina = sin(ang); // - values for repeated use
float t, x, a; // temporary variables for various uses
float dx; // deltaX for linear equations
float ext1, ext2; // min/max vertical values
// move rr2 to make rr1 cannonic
C = rr2->C;
SubVectors2D(&C, &rr1->C);
// rotate rr2 clockwise by rr2->ang to make rr2 axis-aligned
RotateVector2DClockwise(&C, rr2->ang);
// calculate vertices of (moved and axis-aligned := 'ma') rr2
BL = TR = C;
/*SubVectors2D(&BL, &rr2->S);
AddVectors2D(&TR, &rr2->S);*/
//-----------------------------------
BL.x -= rr2->S.x/2; BL.y -= rr2->S.y/2;
TR.x += rr2->S.x/2; TR.y += rr2->S.y/2;
// calculate vertices of (rotated := 'r') rr1
A.x = -(rr1->S.y/2)*sina; B.x = A.x; t = (rr1->S.x/2)*cosa; A.x += t; B.x -= t;
A.y = (rr1->S.y/2)*cosa; B.y = A.y; t = (rr1->S.x/2)*sina; A.y += t; B.y -= t;
//---------------------------------------
//// calculate vertices of (rotated := 'r') rr1
//A.x = -rr1->S.y*sina; B.x = A.x; t = rr1->S.x*cosa; A.x += t; B.x -= t;
//A.y = rr1->S.y*cosa; B.y = A.y; t = rr1->S.x*sina; A.y += t; B.y -= t;
t = sina*cosa;
// verify that A is vertical min/max, B is horizontal min/max
if (t < 0)
{
t = A.x; A.x = B.x; B.x = t;
t = A.y; A.y = B.y; B.y = t;
}
// verify that B is horizontal minimum (leftest-vertex)
if (sina < 0) { B.x = -B.x; B.y = -B.y; }
// if rr2(ma) isn't in the horizontal range of
// colliding with rr1(r), collision is impossible
if (B.x > TR.x || B.x > -BL.x) return 0;
// if rr1(r) is axis-aligned, vertical min/max are easy to get
if (t == 0) {ext1 = A.y; ext2 = -ext1; }
// else, find vertical min/max in the range [BL.x, TR.x]
else
{
x = BL.x-A.x; a = TR.x-A.x;
ext1 = A.y;
// if the first vertical min/max isn't in (BL.x, TR.x), then
// find the vertical min/max on BL.x or on TR.x
if (a*x > 0)
{
dx = A.x;
if (x < 0) { dx -= B.x; ext1 -= B.y; x = a; }
else { dx += B.x; ext1 += B.y; }
ext1 *= x; ext1 /= dx; ext1 += A.y;
}
x = BL.x+A.x; a = TR.x+A.x;
ext2 = -A.y;
// if the second vertical min/max isn't in (BL.x, TR.x), then
// find the local vertical min/max on BL.x or on TR.x
if (a*x > 0)
{
dx = -A.x;
if (x < 0) { dx -= B.x; ext2 -= B.y; x = a; }
else { dx += B.x; ext2 += B.y; }
ext2 *= x; ext2 /= dx; ext2 -= A.y;
}
}
// check whether rr2(ma) is in the vertical range of colliding with rr1(r)
// (for the horizontal range of rr2)
return !((ext1 < BL.y && ext2 < BL.y) ||
(ext1 > TR.y && ext2 > TR.y));
}
inline void AddVectors2D(_Vector2D * v1, _Vector2D * v2)
{
v1->x += v2->x; v1->y += v2->y;
}
inline void SubVectors2D(_Vector2D * v1, _Vector2D * v2)
{
v1->x -= v2->x; v1->y -= v2->y;
}
inline void RotateVector2DClockwise(_Vector2D * v, float ang)
{
float t, cosa = cos(ang), sina = sin(ang);
t = v->x;
v->x = t*cosa + v->y*sina;
v->y = -t*sina + v->y*cosa;
}
于 2013-12-26T06:20:10.860 に答える
1
Rect.IntersectsWith()も使用できます。
たとえば、WPF では、RenderTransform を使用して Canvas に配置された 2 つの UIElement があり、それらが交差するかどうかを調べたい場合、同様のものを使用できます。
bool IsIntersecting(UIElement element1, UIElement element2)
{
Rect area1 = new Rect(
(double)element1.GetValue(Canvas.TopProperty),
(double)element1.GetValue(Canvas.LeftProperty),
(double)element1.GetValue(Canvas.WidthProperty),
(double)element1.GetValue(Canvas.HeightProperty));
Rect area2 = new Rect(
(double)element2.GetValue(Canvas.TopProperty),
(double)element2.GetValue(Canvas.LeftProperty),
(double)element2.GetValue(Canvas.WidthProperty),
(double)element2.GetValue(Canvas.HeightProperty));
Transform transform1 = element1.RenderTransform as Transform;
Transform transform2 = element2.RenderTransform as Transform;
if (transform1 != null)
{
area1.Transform(transform1.Value);
}
if (transform2 != null)
{
area2.Transform(transform2.Value);
}
return area1.IntersectsWith(area2);
}
于 2014-02-18T12:15:29.477 に答える
0
Matlab の実装:
function isIntersecting = IsPolygonsIntersecting(polyVertices1, polyVertices2)
isIntersecting = ...
IsPolygon1Intersecting2( polyVertices1, polyVertices2 ) && ...
IsPolygon1Intersecting2( polyVertices2, polyVertices1 );
end
function isIntersecting = IsPolygon1Intersecting2(polyVertices1,polyVertices2)
nVertices = size(polyVertices1,1);
isIntersecting = true;
for i1 = 1:nVertices
% Current edge vertices:
i2 = mod(i1, nVertices) + 1;
p1 = polyVertices1(i1,:);
p2 = polyVertices1(i2,:);
% Project the polygon vertices on the edge normal and find the extreme values:
normal = [p2(2) - p1(2); p1(1) - p2(1)];
minA = min(polyVertices1 * normal);
maxA = max(polyVertices1 * normal);
minB = min(polyVertices2 * normal);
maxB = max(polyVertices2 * normal);
if (maxA < minB || maxB < minA)
isIntersecting = false;
return;
end
end
end
于 2021-11-09T12:17:49.253 に答える