FFT を使用してニューラル シミュレータの計算を高速化しようとしています。
方程式は次のとおりです。
(1) \sum(j=1 to N) (w(i - j) * s_NMDA[j])
ここで、s_NMDA は長さ N のベクトルで、w は次のように定義されます。
(2) w(j) = tanh[1/(2 * シグマ * p)] * exp(-abs(j) / (シグマ * p)]
ここで、sigma と p は定数です。
(stackoverflow で方程式をレンダリングするより良い方法はありますか?)
計算は N 個のニューロンに対して行う必要があります。(1) は絶対距離 abs(i - j) のみに依存するため、FFT (畳み込み定理) を使用してこれを計算できるはずです。
FFTW を使用してこれを実装しようとしましたが、結果は期待される結果と一致しません。私はこれまで FFTW を使用したことがなく、畳み込み定理に関する私の仮定が間違っているかどうか、私の実装が間違っているかどうかはわかりません。
void f_I_NMDA_FFT(
const double **states, // states[i][6] == s_NMDA[i]
const unsigned int numNeurons)
{
fftw_complex *distances, *sNMDAs, *convolution;
fftw_complex *distances_f, *sNMDAs_f, *convolution_f;
fftw_plan p, pinv;
const double scale = 1./numNeurons;
distances = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
sNMDAs = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
convolution = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
distances_f = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
sNMDAs_f = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
convolution_f = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
// fill input array for distances
for (unsigned int i = 0; i < numNeurons; ++i)
{
distances[i][0] = w(i);
distances[i][1] = 0;
}
// fill input array for sNMDAs
for (unsigned int i = 0; i < numNeurons; ++i)
{
sNMDAs[i][0] = states[i][6];
sNMDAs[i][1] = 0;
}
p = fftw_plan_dft_1d(numNeurons,
distances,
distances_f,
FFTW_FORWARD,
FFTW_ESTIMATE);
fftw_execute(p);
p = fftw_plan_dft_1d(numNeurons,
sNMDAs,
sNMDAs_f,
FFTW_FORWARD,
FFTW_ESTIMATE);
fftw_execute(p);
// convolution in frequency domain
for(unsigned int i = 0; i < numNeurons; ++i)
{
convolution_f[i][0] = (distances_f[i][0] * sNMDAs_f[i][0]
- distances_f[i][1] * sNMDAs_f[i][1]) * scale;
convolution_f[i][1] = (distances_f[i][0] * sNMDAs_f[i][1]
- distances_f[i][1] * sNMDAs_f[i][0]) * scale;
}
pinv = fftw_plan_dft_1d(numNeurons,
convolution_f,
convolution,
FFTW_FORWARD,
FFTW_ESTIMATE);
fftw_execute(pinv);
// compute and compare with expected result
for (unsigned int i = 0; i < numNeurons; ++i)
{
double expected = 0;
for (int j = 0; j < numNeurons; ++j)
{
expected += w(i - j) * states[j][6];
}
printf("i=%d, FFT: r%f, i%f : Expected: %f\n", i, convolution[i][0], convolution[i][1], expected);
}
fftw_destroy_plan(p);
fftw_destroy_plan(pinv);
fftw_free(distances), fftw_free(sNMDAs), fftw_free(convolution);
fftw_free(distances_f), fftw_free(sNMDAs_f), fftw_free(convolution_f);
20 個のニューロンの出力例を次に示します。
i=0, FFT: r0.042309, i0.000000 : Expected: 0.041504
i=1, FFT: r0.042389, i0.000000 : Expected: 0.042639
i=2, FFT: r0.042466, i0.000000 : Expected: 0.043633
i=3, FFT: r0.042543, i0.000000 : Expected: 0.044487
i=4, FFT: r0.041940, i0.000000 : Expected: 0.045203
i=5, FFT: r0.041334, i0.000000 : Expected: 0.045963
i=6, FFT: r0.041405, i0.000000 : Expected: 0.046585
i=7, FFT: r0.041472, i0.000000 : Expected: 0.047070
i=8, FFT: r0.041537, i0.000000 : Expected: 0.047419
i=9, FFT: r0.041600, i0.000000 : Expected: 0.047631
i=10, FFT: r0.041660, i0.000000 : Expected: 0.047708
i=11, FFT: r0.041717, i0.000000 : Expected: 0.047649
i=12, FFT: r0.041773, i0.000000 : Expected: 0.047454
i=13, FFT: r0.041826, i0.000000 : Expected: 0.047123
i=14, FFT: r0.041877, i0.000000 : Expected: 0.046656
i=15, FFT: r0.041926, i0.000000 : Expected: 0.046052
i=16, FFT: r0.041294, i0.000000 : Expected: 0.045310
i=17, FFT: r0.042059, i0.000000 : Expected: 0.044430
i=18, FFT: r0.042144, i0.000000 : Expected: 0.043412
i=19, FFT: r0.042228, i0.000000 : Expected: 0.042253
結果はほぼ正しいように見えますが、誤差はニューロンの数とともに増加します。また、結果は、位置 (i) が非常に低いか非常に高い場合により正確になるようです。何が起きてる?
更新: Oli Charlesworth が示唆したように、アルゴリズムをオクターブで実装して、実装の問題か数学の問題かを確認しました。
input = [0.186775; 0.186775; 0.186775; 0.186775; 0.186775; 0; 0.186775; 0.186775; 0.186775; 0.186775];
function ret = _w(i)
ret = tanh(1 / (2* 1 * 32)) * exp(-abs(i) / (1 * 32));
end
for i = linspace(1, 10, 10)
expected = 0;
for j = linspace(1, 10, 10)
expected += _w(i-j) * input(j);
end
expected
end
distances = _w(transpose(linspace(0, 9, 10)));
input_f = fft(input);
distances_f = fft(distances);
convolution_f = input_f .* distances_f;
convolution = ifft(convolution_f)
結果:
expected = 0.022959
expected = 0.023506
expected = 0.023893
expected = 0.024121
expected = 0.024190
expected = 0.024100
expected = 0.024034
expected = 0.023808
expected = 0.023424
expected = 0.022880
convolution =
0.022959
0.023036
0.023111
0.023183
0.023253
0.022537
0.022627
0.022714
0.022798
0.022880
結果はほとんど同じです。したがって、畳み込み定理 / FFT に関する私の理解には何か問題があるに違いありません。