アンドロイドの行列クラスのmultiplyMVメソッドが、反時計回りになると思ったときに、ベクトル座標を時計回りに回転させているように見える理由に戸惑っています。
このコードでは、posはベクトル座標であり、<0.0f、5.0f、0.0f>に設定されており、行列は座標ベクトルをZ軸を中心に-45度回転します。結果のベクトル座標は<+、+>象限、つまり<3.535534、3.535534、0.0 >であると予想されます。ただし、代わりに、座標を反対方向、つまり<-、+>象限、つまり<-3.535534、3.535534、0.0 >に回転します。
Matrix4 mtxRot = Matrix4.InitRotateEulerXYZ(0.0f, 0.0f, -45f);
pos.Set(0.0f, 5.0f ,0.0f);
mtxRot.TransformCoordVec(pos);
これがMatrix4.InitRotateEulerXYZの私のです
public static Matrix4 InitRotateEulerXYZ(float x, float y, float z)
{
Matrix4 rotMatrix = new Matrix4();
/* XYZ = | cz*cy, sz*cx + cz*sy*sx, sz*sx - cz*sy*cx |
| -sz*cy, cz*cx - sz*sy*sx, cz*sx + sz*sy*cx |
| sy, -cy*sx, cy*cx | */
// Convert from degrees to radians
x = MathHelper.DegreesToRadians(x);
y = MathHelper.DegreesToRadians(y);
z = MathHelper.DegreesToRadians(z);
rotMatrix.GetArray()[0] = MathHelper.Cos(z) * MathHelper.Cos(y);
rotMatrix.GetArray()[1] = -MathHelper.Sin(z) * MathHelper.Cos(y);
rotMatrix.GetArray()[2] = MathHelper.Sin(y);
rotMatrix.GetArray()[4] = (MathHelper.Sin(z) * MathHelper.Cos(x)) + (MathHelper.Cos(z) * MathHelper.Sin(y) * MathHelper.Sin(x));
rotMatrix.GetArray()[5] = (MathHelper.Cos(z) * MathHelper.Cos(x)) - (MathHelper.Sin(z) * MathHelper.Sin(y) * MathHelper.Sin(x));
rotMatrix.GetArray()[6] = -(MathHelper.Cos(y) * MathHelper.Sin(x));
rotMatrix.GetArray()[8 ] = (MathHelper.Sin(z) * MathHelper.Sin(x)) - (MathHelper.Cos(z) * MathHelper.Sin(y) * MathHelper.Cos(x));
rotMatrix.GetArray()[9 ] = (MathHelper.Cos(z) * MathHelper.Sin(x)) + (MathHelper.Sin(z) * MathHelper.Sin(y) * MathHelper.Cos(x));
rotMatrix.GetArray()[10] = MathHelper.Cos(y) * MathHelper.Cos(x);
return rotMatrix;
}
そしてこれが私のMatrix4.TransformCoordVecメソッドです
public Vector3 TransformCoordVec(Vector3 vec3)
{
Matrix4.inVec[0] = vec3.X;
Matrix4.inVec[1] = vec3.Y;
Matrix4.inVec[2] = vec3.Z;
Matrix4.inVec[3] = 1.0f; // homogeneousCoord
Matrix.multiplyMV(Matrix4.outVec, 0, this.matrix, 0, Matrix4.inVec, 0);
vec3.X = Matrix4.outVec[0]; vec3.Y = Matrix4.outVec[1]; vec3.Z = Matrix4.outVec[2];
return vec3;
}
どんな助けでも大歓迎です!
修繕
InitRotateEulerXYZと私のQuaternionToMatrix()メソッドは、正の角度で反時計回りに回転させるために転置する必要がありました。修正された方法は次のとおりです。
Quaternion.ToMatrix
/**Converts a quanternion to its equivilant matrix form**/
public Matrix4 ToMatrix()
{
// First, lets check if we need to re-normalize our quaternion
if(normalRegenerationCount <= 1000)
{
Normalize();
}
float x2 = x * x;
float y2 = y * y;
float z2 = z * z;
float xy = x * y;
float xz = x * z;
float yz = y * z;
float wx = w * x;
float wy = w * y;
float wz = w * z;
Matrix4 result = new Matrix4();
// This calculation would be a lot more complicated for non-unit length quaternions
// Note: The constructor of Matrix4 expects the Matrix in column-major format like expected by
// OpenGL
result.Set_11(1.0f - (2.0f * (y2 + z2)));
result.Set_12(2.0f * (xy + wz));
result.Set_13(2.0f * (xz - wy));
result.Set_14(0.0f);
result.Set_21(2.0f * (xy - wz));
result.Set_22(1.0f - (2.0f * (x2 + z2)));
result.Set_23(2.0f * (yz + wx));
result.Set_24(0.0f);
result.Set_31(2.0f * (xz + wy));
result.Set_32(2.0f * (yz - wx));
result.Set_33(1.0f - (2.0f * (x2 + y2)));
result.Set_34(0.0f);
result.Set_41(0.0f);
result.Set_42(0.0f);
result.Set_43(0.0f);
result.Set_44(1.0f);
return result;
}
Matrix.InitRotateEulerXYZ
public static Matrix4 InitRotateEulerXYZ(float x, float y, float z)
{
Matrix4 rotMatrix = new Matrix4();
// Convert from degrees to radians
x = MathHelper.DegreesToRadians(x);
y = MathHelper.DegreesToRadians(y);
z = MathHelper.DegreesToRadians(z);
rotMatrix.matrix[0] = MathHelper.Cos(z) * MathHelper.Cos(y);
rotMatrix.matrix[1] = (MathHelper.Sin(z) * MathHelper.Cos(x)) + (MathHelper.Cos(z) * MathHelper.Sin(y) * MathHelper.Sin(x));
rotMatrix.matrix[2] = (MathHelper.Sin(z) * MathHelper.Sin(x)) - (MathHelper.Cos(z) * MathHelper.Sin(y) * MathHelper.Cos(x));
rotMatrix.matrix[4] = -MathHelper.Cos(y) * MathHelper.Sin(z);
rotMatrix.matrix[5] = (MathHelper.Cos(z) * MathHelper.Cos(x)) - (MathHelper.Sin(z) * MathHelper.Sin(y) * MathHelper.Sin(x));
rotMatrix.matrix[6] = (MathHelper.Cos(z) * MathHelper.Sin(x)) + (MathHelper.Sin(z) * MathHelper.Sin(y) * MathHelper.Cos(x));
rotMatrix.matrix[8 ] = MathHelper.Sin(y);
rotMatrix.matrix[9 ] = -(MathHelper.Cos(y) * MathHelper.Sin(x));
rotMatrix.matrix[10] = MathHelper.Cos(y) * MathHelper.Cos(x);
return rotMatrix;
}