1000x1000 の大きさの 2 つの配列を反復処理する必要があります。反復を高速化するために解像度を 100x100 に下げましたが、それでも 1 つの配列で約 15 分かかります。そのため、両方を同時に反復しようとしたところ、次のことがわかりました。
for index, (x,y) in ndenumerate(izip(x_array,y_array)):
しかし、その後エラーが発生します:
ValueError: too many values to unpack
ここに私の完全なpythonコードがあります:これは私の修士論文のためのものであり、最終的に約100回実行する必要があるため、これをより速くするのを手伝ってくれることを願っています...
area_length=11
d_circle=(area_length-1)/2
xdis_new=xdis.copy()
ydis_new=ydis.copy()
ie,je=xdis_new.shape
while (np.isnan(np.sum(xdis_new))) and (np.isnan(np.sum(ydis_new))):
xdis_interpolated=xdis_new.copy()
ydis_interpolated=ydis_new.copy()
# itx=np.nditer(xdis_new,flags=['multi_index'])
# for x in itx:
# print 'next x and y'
for index, (x,y) in ndenumerate(izip(xdis_new,ydis_new)):
if np.isnan(x):
print 'index',index[0],index[1]
print 'interpolate'
# define indizes of interpolation area
i1=index[0]-(area_length-1)/2
if i1<0:
i1=0
i2=index[0]+((area_length+1)/2)
if i2>ie:
i2=ie
j1=index[1]-(area_length-1)/2
if j1<0:
j1=0
j2=index[1]+((area_length+1)/2)
if j2>je:
j2=je
# -->
print 'i1',i1,'','i2',i2
print 'j1',j1,'','j2',j2
area_values=xdis_new[i1:i2,j1:j2]
print area_values
b=area_values[~np.isnan(area_values)]
if len(b)>=((area_length-1)/2)*4:
xi,yi=meshgrid(arange(len(area_values[0,:])),arange(len(area_values[:,0])))
weight=zeros((len(area_values[0,:]),len(area_values[:,0])))
d=zeros((len(area_values[0,:]),len(area_values[:,0])))
weight_fac=zeros((len(area_values[0,:]),len(area_values[:,0])))
weighted_area=zeros((len(area_values[0,:]),len(area_values[:,0])))
d=sqrt((xi-xi[(area_length-1)/2,(area_length-1)/2])*(xi-xi[(area_length-1)/2,(area_length-1)/2])+(yi-yi[(area_length-1)/2,(area_length-1)/2])*(yi-yi[(area_length-1)/2,(area_length-1)/2]))
weight=1/d
weight[where(d==0)]=0
weight[where(d>d_circle)]=0
weight[where(np.isnan(area_values))]=0
weight_sum=np.sum(weight.flatten())
weight_fac=weight/weight_sum
weighted_area=area_values*weight_fac
print 'weight'
print weight_fac
print 'values'
print area_values
print 'weighted'
print weighted_area
m=nansum(weighted_area)
xdis_interpolated[index]=m
print 'm',m
else:
print 'insufficient elements'
if np.isnan(y):
print 'index',index[0],index[1]
print 'interpolate'
# define indizes of interpolation area
i1=index[0]-(area_length-1)/2
if i1<0:
i1=0
i2=index[0]+((area_length+1)/2)
if i2>ie:
i2=ie
j1=index[1]-(area_length-1)/2
if j1<0:
j1=0
j2=index[1]+((area_length+1)/2)
if j2>je:
j2=je
# -->
print 'i1',i1,'','i2',i2
print 'j1',j1,'','j2',j2
area_values=ydis_new[i1:i2,j1:j2]
print area_values
b=area_values[~np.isnan(area_values)]
if len(b)>=((area_length-1)/2)*4:
xi,yi=meshgrid(arange(len(area_values[0,:])),arange(len(area_values[:,0])))
weight=zeros((len(area_values[0,:]),len(area_values[:,0])))
d=zeros((len(area_values[0,:]),len(area_values[:,0])))
weight_fac=zeros((len(area_values[0,:]),len(area_values[:,0])))
weighted_area=zeros((len(area_values[0,:]),len(area_values[:,0])))
d=sqrt((xi-xi[(area_length-1)/2,(area_length-1)/2])*(xi-xi[(area_length-1)/2,(area_length-1)/2])+(yi-yi[(area_length-1)/2,(area_length-1)/2])*(yi-yi[(area_length-1)/2,(area_length-1)/2]))
weight=1/d
weight[where(d==0)]=0
weight[where(d>d_circle)]=0
weight[where(np.isnan(area_values))]=0
weight_sum=np.sum(weight.flatten())
weight_fac=weight/weight_sum
weighted_area=area_values*weight_fac
print 'weight'
print weight_fac
print 'values'
print area_values
print 'weighted'
print weighted_area
m=nansum(weighted_area)
ydis_interpolated[index]=m
print 'm',m
else:
print 'insufficient elements'
else:
print 'no need to interpolate'
xdis_new=xdis_interpolated
ydis_new=ydis_interpolated