問題のセットアップ: サイズ n1、n2、n3=nx、ny、nz のデータの 3D (空間) グリッドがあり、a または b に対して nz=1 である可能性があります。そのグリッド内の各ポイントには、グリッドポイントごとにサイズ NDIM (通常は =4) のデータのベクトル (a) と、グリッドポイントごとにサイズ NDIMxNDIM の別の行列 (b) があります。ab や ba などの (ポイントごとの) ものを、メモリと CPU の両方で最も効率的に計算したいと考えています。
本質的に、私は一般化したいと思いますA loopless 3D matrix multiplication in python。効果があったように思います。しかし、私はそれを理解していません。グーグルとスタックオーバーフローを検索しても何の助けにもなりません。説明してさらに一般化してください!ありがとう!
import numpy as np
# gives a.b per point:
nx=5
ny=8
nz=3
a = np.arange(nx*ny*nz*4).reshape(4, nx,ny,nz)
b = np.arange(nx*ny*1*4*4).reshape(4, 4, nx,ny,1)
ctrue=a*0.0
for ii in np.arange(0,nx):
for jj in np.arange(0,ny):
for kk in np.arange(0,nz):
ctrue[:,ii,jj,kk] = np.tensordot(a[:,ii,jj,kk],b[:,:,ii,jj,0],axes=[0,1])
c2 = (a[:,None,None,None] * b[:,:,None,None,None]).sum(axis=1).reshape(4,nx,ny,nz)
np.sum(ctrue-c2)
# gives 0 as required
# gives b.a per point:
ctrue2=a*0.0
for ii in np.arange(0,nx):
for jj in np.arange(0,ny):
for kk in np.arange(0,nz):
ctrue2[:,ii,jj,kk] = np.tensordot(a[:,ii,jj,kk],b[:,:,ii,jj,0],axes=[0,0])
btrans=np.transpose(b,(1,0,2,3,4))
c22 = (a[:,None,None,None] * btrans[:,:,None,None,None]).sum(axis=1).reshape(4,nx,ny,nz)
np.sum(ctrue2-c22)
# gives 0 as required
# Note that only the single line for c2 and c22 are required -- the rest of the code is for testing/comparison to see if that line works.
# Issues/Questions:
# 1) Please explain why those things work and further generalize!
# 2) After reading about None=np.newaxis, I thought something like this would work:
c22alt = (a[:,None,:,:,:] * btrans[:,:]).sum(axis=1).reshape(4,nx,ny,nz)
np.sum(ctrue2-c22alt)
# but it doesn't.
# 3) I don't see how to avoid assignment of a separate btrans. An np.transpose on b[:,:,None,None,None] doesn't work.
その他の関連リンク: Numpy: Multiplying a matrix with a 3d tensor -- Suggestion How to use numpy with 'None' value in Python?