(n log n) を示すアルゴリズムを使用して、最大サブ配列問題を実装したいと考えています。
最大連続サブ配列、または配列内の連続要素の最大合計を見つけます。
仮定:すべての要素が負の数ではない
私はいくぶん実用的な解決策を持っています。問題は、重なっている中央の配列と、重なっているサブの問題を指定する適切なインデックスにあり、一部の配列は他の配列で正しい答えを得ていません。
比較と正確さの確認のために、Kadane のアルゴリズムとして知られるソリューションを実装しました (複雑さは Omega(n) だと思います)。
これはKandaneのアルゴリズムです(http://en.wikipedia.org/wiki/Maximum_subarray_problem):
public static void Kadane(int array[]) {
int max_ending_here = 0;
for (int i = 0; i < array.length; i++) {
max_ending_here = max_ending_here + array[i];
max_so_far = Math.max(max_so_far, max_ending_here);
}
System.out.println("Kadane(int array []): " + max_so_far);
}
分割と征服を使用してサブ配列の最大値を比較し、再帰が終了するまで、最大値を持つサブ配列で再帰呼び出しを行う私の再帰的実装
public static void findMaxSubArray(int[] array, int lowIndex, int highIndex) {
int mid = 0;
int arrayLength = 0;
int maxEndingHere = 0;
if (array == null) {
throw new NullPointerException();
} else if
//base condition
(array.length < 2 || (highIndex==lowIndex)) {
maxLowIndex = lowIndex;
maxHighIndex = highIndex;
System.out.println("findMaxSubArray(int[] array, int lowIndex, int highIndex)");
System.out.println("global Max Range, low:" + maxLowIndex + " high: " + maxHighIndex);
System.out.println("global Max Sum:" + globalMaximum);
} else {
System.out.println();
int lowMidMax = 0;
int midHighMax = 0;
int centerMax = 0;
//array length is always the highest index +1
arrayLength = highIndex + 1;
//if even number of elements in array
if (array.length % 2 == 0) {
mid = arrayLength / 2;
System.out.println("low: " + lowIndex + " mid: " + mid);
for (int i = lowIndex; i < mid; i++) {
System.out.print(array[i] + ",");
}
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowIndex; i < mid; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new maximum found
globalMaximum = lowMidMax = maxEndingHere;
lowIndex = i;
}
}
//end low mid calc
for (int i = mid; i <= highIndex; i++) {
System.out.print(array[i] + ",");
}
System.out.println("mid: " + mid + " high: " + highIndex);
//calculate maximum contigous array encountered so far in mid to high indexes
for (int i = mid; i <= highIndex; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new maximum found
globalMaximum = midHighMax = maxEndingHere;
mid = i;
}
}
//end mid high calc
//calculate maximum contigous array encountered so far in center array
int lowCenter = mid -1;
int highCenter = highIndex -1;
System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
for (int i = lowCenter; i < highCenter; i++) {
System.out.print(array[i] + ",");
}
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowCenter; i < highCenter; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new max found
globalMaximum = centerMax = maxEndingHere;
lowCenter = i;
}
}
//end center calc
//determine which range contains the maximum sub array
//if lowMidMax <= midHighMax and centerMax
if (lowMidMax >= midHighMax && lowMidMax >= centerMax) {
maxLowIndex = lowIndex;
maxHighIndex = mid;
//recursive call
findMaxSubArray(array, lowIndex, mid);
}
if (midHighMax >= lowMidMax && midHighMax >= centerMax) {
maxLowIndex = mid;
maxHighIndex = highIndex;
//recursive call
findMaxSubArray(array, mid, highIndex);
}
if (centerMax >= midHighMax && centerMax >= lowMidMax) {
maxLowIndex = lowCenter;
maxHighIndex = highCenter;
//recursive call
findMaxSubArray(array, lowCenter, highCenter);
}
}//end if even parent array
//else if uneven array
else {
mid = (int) Math.floor(arrayLength / 2);
System.out.println("low: " + lowIndex + " mid: " + mid);
for (int i = lowIndex; i < mid; i++) {
System.out.print(array[i] + ",");
}
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowIndex; i < mid; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new maximum found
globalMaximum = lowMidMax = maxEndingHere;
lowIndex = i;
}
}
//end low mid calc
System.out.println("mid+1: " + (mid + 1) + " high: " + highIndex);
for (int i = mid + 1; i <= highIndex; i++) {
System.out.print(array[i] + ",");
}
//calculate maximum contigous array encountered so far in mid to high indexes
for (int i = mid + 1; i <= highIndex; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new maximum found
globalMaximum = midHighMax = maxEndingHere;
mid = i;
}
}
//end mid high calc
//calculate maximum contigous array encountered so far in center array
int lowCenter = mid;
int highCenter = highIndex -1;
System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
for (int i = lowCenter; i < highCenter; i++) {
System.out.print(array[i] + ",");
}
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowCenter; i < highCenter; i++) {
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0) {
maxEndingHere = 0;
}
if (globalMaximum < maxEndingHere) {
//new max
globalMaximum = centerMax = maxEndingHere;
lowCenter = i;
}
}
//end center calc
//determine which range contains the maximum sub array
//if lowMidMax <= midHighMax and centerMax
if (lowMidMax >= midHighMax && lowMidMax >= centerMax) {
maxLowIndex = lowIndex;
maxHighIndex = mid;
//recursive call
findMaxSubArray(array, lowIndex, mid);
}
if (midHighMax >= lowMidMax && midHighMax >= centerMax) {
maxLowIndex = mid;
maxHighIndex = highIndex;
//recursive call
findMaxSubArray(array, mid, highIndex);
}
if (centerMax >= midHighMax && centerMax >= lowMidMax) {
maxLowIndex = lowCenter;
maxHighIndex = highCenter;
//recursive call
findMaxSubArray(array, lowCenter, highCenter);
}
}//end odd parent array length
}//end outer else array is ok to computed
}//end method
結果: 配列 subArrayProblem1 を使用 = {1, 2, 3, 4, 5, 6, 7, 8};
Kadane(int array []): 36 low: 0 mid: 4 1,2,3,4,5,6,7,8,mid: 4 high: 7 lowCenter: 6 highCenter: 6
findMaxSubArray(int[] array, int lowIndex, int highIndex) global Max Range, low:7 high: 7 global Max Sum:36 BUILD SUCCESSFUL (合計時間: 0 秒)
Kadane と比較するとグローバルな最大合計は正確ですが、低インデックスと高インデックスの範囲は最後の再帰呼び出しを反映しています。
結果: 配列 subArrayProblem を使用 = {100, 113, 110, 85, 105, 102, 86, 63, 81, 101, 94, 106, 101, 79, 94, 90, 97};
Kadane(int array []): 1607 low: 0 mid: 8 100,113,110,85,105,102,86,63,mid+1: 9 high: 16 101,94,106,101,79,94,90,97,lowCenter: 16 highCenter: 15
findMaxSubArray(int[] array, int lowIndex, int highIndex) グローバル最大範囲、低:16 高: 16 グローバル最大合計:1526
グローバル最大値が正しくありません。違いは実際には 1 要素であり、要素 81 であることに注意してください