3

私はいくつかの標準的な問題を解決しようとしてCUDAを学んでいます。例として、次のコードを使用して2次元の拡散方程式を解きます。しかし、私の結果は標準の結果とは異なり、それを理解することはできません。

//kernel definition
__global__ void diffusionSolver(double* A, double * old,int n_x,int n_y)
{

    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;

    if(i*(n_x-i-1)*j*(n_y-j-1)!=0)
        A[i+n_y*j] = A[i+n_y*j] + (old[i-1+n_y*j]+old[i+1+n_y*j]+
                       old[i+(j-1)*n_y]+old[i+(j+1)*n_y] -4*old[i+n_y*j])/40;


}

int main()
{


    int i,j ,M;
    M = n_y ;
    phi = (double *) malloc( n_x*n_y* sizeof(double));
    phi_old = (double *) malloc( n_x*n_y* sizeof(double));
    dummy = (double *) malloc( n_x*n_y* sizeof(double));
    int iterationMax =10;
    //phase initialization
    for(j=0;j<n_y ;j++)
    {
        for(i=0;i<n_x;i++)
        {
            if((.4*n_x-i)*(.6*n_x-i)<0)
                phi[i+M*j] = -1;
            else 
                phi[i+M*j] = 1;

            phi_old[i+M*j] = phi[i+M*j];
        }
    }

    double *dev_phi;
    cudaMalloc((void **) &dev_phi, n_x*n_y*sizeof(double));

    dim3 threadsPerBlock(100,10);
    dim3 numBlocks(n_x*n_y / threadsPerBlock.x, n_x*n_y / threadsPerBlock.y);

    //start iterating 
    for(int z=0; z<iterationMax; z++)
    {
        //copy array on host to device
        cudaMemcpy(dev_phi, phi, n_x*n_y*sizeof(double),
                cudaMemcpyHostToDevice);

        //call kernel
        diffusionSolver<<<numBlocks, threadsPerBlock>>>(dev_phi, phi_old,n_x,n_y);

        //get updated array back on host
        cudaMemcpy(phi, dev_phi,n_x*n_y*sizeof(double), cudaMemcpyDeviceToHost);

        //old values will be assigned new values
        for(j=0;j<n_y ;j++)
        {
            for(i=0;i<n_x;i++)
            {
                phi_old[i+n_y*j] = phi[i+n_y*j];
            }
        }
    }

    return 0;
}

このプロセスに何か問題があるかどうか誰かに教えてもらえますか?どんな助けでも大歓迎です。

4

3 に答える 3

4

talonmies、brano、huseyinは、すでにコードのいくつかの間違いを指摘しています。

拡散(熱)方程式は、CUDAで解ける偏微分方程式の古典的な例の1つです。CUDAbyExampleブックの第7章にも完全な例があります。

将来のユーザーへの参照として、CPUコードとGPUコードの両方を含む完全に機能する例を以下に示します。talonmiesによって提案されているように、ポインターを交換する代わりに、1つのループで2つのJacobi反復を凝縮しているだけです。

#include <iostream>

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include "Utilities.cuh"

#define BLOCK_SIZE_X 16
#define BLOCK_SIZE_Y 16

/***********************************/
/* JACOBI ITERATION FUNCTION - GPU */
/***********************************/
__global__ void Jacobi_Iterator_GPU(const float * __restrict__ T_old, float * __restrict__ T_new, const int NX, const int NY)
{
    const int i = blockIdx.x * blockDim.x + threadIdx.x ;
    const int j = blockIdx.y * blockDim.y + threadIdx.y ;

                                //                         N 
    int P = i + j*NX;           // node (i,j)              |
    int N = i + (j+1)*NX;       // node (i,j+1)            |
    int S = i + (j-1)*NX;       // node (i,j-1)     W ---- P ---- E
    int E = (i+1) + j*NX;       // node (i+1,j)            |
    int W = (i-1) + j*NX;       // node (i-1,j)            |
                                //                         S 

    // --- Only update "interior" (not boundary) node points
    if (i>0 && i<NX-1 && j>0 && j<NY-1) T_new[P] = 0.25 * (T_old[E] + T_old[W] + T_old[N] + T_old[S]);
}

/***********************************/
/* JACOBI ITERATION FUNCTION - CPU */
/***********************************/
void Jacobi_Iterator_CPU(float * __restrict T, float * __restrict T_new, const int NX, const int NY, const int MAX_ITER)
{
    for(int iter=0; iter<MAX_ITER; iter=iter+2)
    {
        // --- Only update "interior" (not boundary) node points
        for(int j=1; j<NY-1; j++) 
            for(int i=1; i<NX-1; i++) {
                float T_E = T[(i+1) + NX*j];
                float T_W = T[(i-1) + NX*j];
                float T_N = T[i + NX*(j+1)];
                float T_S = T[i + NX*(j-1)];
                T_new[i+NX*j] = 0.25*(T_E + T_W + T_N + T_S);
            }

        for(int j=1; j<NY-1; j++) 
            for(int i=1; i<NX-1; i++) {
                float T_E = T_new[(i+1) + NX*j];
                float T_W = T_new[(i-1) + NX*j];
                float T_N = T_new[i + NX*(j+1)];
                float T_S = T_new[i + NX*(j-1)];
                T[i+NX*j] = 0.25*(T_E + T_W + T_N + T_S);
            }
    }
}

/******************************/
/* TEMPERATURE INITIALIZATION */
/******************************/
void Initialize(float * __restrict h_T, const int NX, const int NY)
{
    // --- Set left wall to 1
    for(int j=0; j<NY; j++) h_T[j * NX] = 1.0;
}


/********/
/* MAIN */
/********/
int main()
{
    const int NX = 256;         // --- Number of discretization points along the x axis
    const int NY = 256;         // --- Number of discretization points along the y axis

    const int MAX_ITER = 1;     // --- Number of Jacobi iterations

    // --- CPU temperature distributions
    float *h_T              = (float *)calloc(NX * NY, sizeof(float));
    float *h_T_old          = (float *)calloc(NX * NY, sizeof(float));
    Initialize(h_T,     NX, NY);
    Initialize(h_T_old, NX, NY);
    float *h_T_GPU_result   = (float *)malloc(NX * NY * sizeof(float));

    // --- GPU temperature distribution
    float *d_T;     gpuErrchk(cudaMalloc((void**)&d_T,      NX * NY * sizeof(float)));
    float *d_T_old; gpuErrchk(cudaMalloc((void**)&d_T_old,  NX * NY * sizeof(float)));

    gpuErrchk(cudaMemcpy(d_T,     h_T, NX * NY * sizeof(float), cudaMemcpyHostToDevice));
    gpuErrchk(cudaMemcpy(d_T_old, d_T, NX * NY * sizeof(float), cudaMemcpyDeviceToDevice));

    // --- Grid size
    dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);
    dim3 dimGrid (iDivUp(NX, BLOCK_SIZE_X), iDivUp(NY, BLOCK_SIZE_Y));

    // --- Jacobi iterations on the host
    Jacobi_Iterator_CPU(h_T, h_T_old, NX, NY, MAX_ITER);

    // --- Jacobi iterations on the device
    for (int k=0; k<MAX_ITER; k=k+2) {
        Jacobi_Iterator_GPU<<<dimGrid, dimBlock>>>(d_T,     d_T_old, NX, NY);   // --- Update d_T_old     starting from data stored in d_T
        Jacobi_Iterator_GPU<<<dimGrid, dimBlock>>>(d_T_old, d_T    , NX, NY);   // --- Update d_T         starting from data stored in d_T_old
    }

    // --- Copy result from device to host
    gpuErrchk(cudaMemcpy(h_T_GPU_result, d_T, NX * NY * sizeof(float), cudaMemcpyDeviceToHost));

    // --- Calculate percentage root mean square error between host and device results
    float sum = 0., sum_ref = 0.;
    for (int j=0; j<NY; j++)
        for (int i=0; i<NX; i++) {
            sum     = sum     + (h_T_GPU_result[j * NX + i] - h_T[j * NX + i]) * (h_T_GPU_result[j * NX + i] - h_T[j * NX + i]);
            sum_ref = sum_ref + h_T[j * NX + i]                                * h_T[j * NX + i];
        }
    printf("Percentage root mean square error = %f\n", 100.*sqrt(sum / sum_ref));

    // --- Release host memory 
    free(h_T);
    free(h_T_GPU_result);

    // --- Release device memory
    gpuErrchk(cudaFree(d_T));
    gpuErrchk(cudaFree(d_T_old));

    return 0;
}

このような例を実行するために必要なUtilities.cuファイルとUtilities.cuhファイルは、このgithubページで管理されています。

于 2015-03-12T06:32:24.490 に答える
3

大きな間違いの1つは、phi_oldがカーネルに渡され、カーネルによって使用されることですが、これはホストポインタです。
cudaMallocを使用してdev_phi_oldをmallocします。これをデフォルト値に設定し、zループに入る前に最初にGPUにコピーします。

于 2012-08-17T07:11:56.510 に答える
2

ここ:

A[i+n_y*j] = A[i+n_y*j] + (old[i-1+n_y*j]+old[i+1+n_y*j]+old[i+(j-1)*n_y]+old[i+(j+1)*n_y] -4*old[i+n_y*j])/40;

40(整数)で除算しているため、拡散率が間違っている可能性があります。実際には、拡散しない結果になる可能性があります。

しかし、Aはdoubleの配列です。

拡散率を40.0で割り、それが機能するかどうかを確認します。

これがJos-Stamのソルバーからのものである場合、40ではなく4.0である必要があります

別のこともあります:

-4*old[i+n_y*j])/40;

ここでは、4(整数)を掛けています。これもインテグラルキャスティングを引き起こす可能性があります!

これ:

-4.0*old[i+n_y*j])/40.0;

いくつかのエラーを減らします。

良い1日を。

于 2012-08-16T20:10:52.207 に答える