5

データセットの各サブ設定でマップを取得し、それに応じて特定のパレット (およびそれぞれの凡例) を適用するループを実行しています。

人々は for() ループの使用を嫌い、アプローチのベクトル化を最大化する傾向があります。この特定のデータ セットを使用してプロセスをベクトル化する最善の方法がわかりません。

この特定のケースでは、特定の季節やさまざまな観測セットなどを考慮して、さまざまな方法論が使用され、種ごとにさまざまなオプションを渡す必要があるため、特に複雑な比較的大きなデータセット (分布種アトラス) を扱っています。種は、ある季節に存在し、別の季節には見逃されることがあります(繁殖者、居住者、または渡り鳥である可能性があります)。マップはすべてのケース (季節) に対して作成する必要があり、存在しない場合は空になります。追加のデータ (フィールドワークからのデータ以外) が利用可能であり、使用される場合があります。マップの凡例は、関心のある変数 (存在量) をカスタムの離散スケールで表示する以外に、すべてのバリエーションに対応する必要があります。

ループを実行することで、必要ないくつかのオブジェクトをより簡単に保持および制御できると感じていますが、関心のある部分を生成するために作成したフラックスに足を踏み入れ、最終的に種分布マップのセットを作成します。

私の問題は、結果の各 ggplot を list() オブジェクトに格納していることです。各季節の各種がリストに格納されます。私が直面している問題は、loopで使用されるとき のscale_fill_manualに関連しています。

マップを完成させたので、動作は奇妙ですが、色は最後の ggplot 出力にのみ適用されます。それにもかかわらず、すべての値は凡例で正しく識別されています。

例を挙げると:

パッケージ

if (!require(ggplot2)) install.packages("ggplot2",
    repos = "http://cran.r-project.org"); library(ggplot2)
if (!require(grid)) install.packages("grid",
    repos = "http://cran.r-project.org"); library(grid)
if (!require(RColorBrewer)) install.packages("RColorBrewer",
    repos = "http://cran.r-project.org"); library(RColorBrewer)
if (!require(reshape)) install.packages("reshape",
    repos = "http://cran.r-project.org"); library(reshape)

最初に簡単な例

#Create a list of colors to be used with scale_manual
palette.l <- list()
palette.l[[1]] <- c('red', 'blue', 'green')
palette.l[[2]] <- c('pink', 'blue', 'yellow')
# Store each ggplot in a list object
plot.l <- list()
#Loop it
for(i in 1:2){
  plot.l[[i]] <- qplot(mpg, wt, data = mtcars, colour = factor(cyl)) +
    scale_colour_manual(values = palette.l[[i]])
}

私のセッションでは、plot.l[ 1 ] は、palette.l[ 2 ]の色で塗りつぶされます。

私の特定のケース

機能

プロットの配置

ArrangeGraph <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
  dots <- list(...)
  n <- length(dots)
  if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
  if(is.null(nrow)) { nrow = ceiling(n/ncol)}
  if(is.null(ncol)) { ncol = ceiling(n/nrow)}
  ## NOTE see n2mfrow in grDevices for possible alternative
  grid.newpage()
  pushViewport(viewport(layout=grid.layout(nrow,ncol)))
  ii.p <- 1
  for(ii.row in seq(1, nrow)) {
    ii.table.row <- ii.row
    if(as.table) {ii.table.row <- nrow - ii.table.row + 1}
    for(ii.col in seq(1, ncol)) {
      ii.table <- ii.p
      if(ii.p > n) break
      print(dots[[ii.table]], vp=VPortLayout(ii.table.row, ii.col))
      ii.p <- ii.p + 1
    }
  }
}

ビューポート

VPortLayout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)

種データセット

bd.aves.1 <- structure(list(quad = c("K113", "K114", "K114", "K114", "K114",...
due to limited body character number limit, please download entire code from
https://docs.google.com/open?id=0BxSZDr4eTnb9R09iSndzZjBMS28

種一覧

list.esp.1 <- c("Sylv mela", "Saxi rube","Ocea leuc")#
# download from the above link

一部の分類とその他のデータ

txcon.1 <- structure(list(id = c(156L, 359L, 387L), grupo = c("Aves", "Aves",# 
# download from the above link

季節

kSeason.1 <- c("Inverno", "Primavera", "Outono")

サンプルグリッド

grid500.df.1 <- structure(list(id = c("K113", "K113", "K113", "K113", "K113",#... 
# download from the above link

追加のマッピング要素

海岸線

coastline.df.1 <- structure(list(long = c(182554.963670234, 180518, 178865.39,#...
# download from the above link

ラベル配置の調整

kFacx1 <- c(9000, -13000, -10000, -12000)

Rコード

for(i in listsp.1) { # LOOP 1 - Species
  # Set up objects 
  sist.i <- list() # Sistematic observations
  nsist.i <- list() # Non-Sistematic observations
  breaks.nind.1 <- list() # Breaks on abundances
  ## Grid and merged dataframe
  spij.1 <- list() # Stores a dataframe for sp i at season j
  ## Palette build
  classes.1 <- list()
  cllevels.1 <- list()
  palette.nind.1 <- list() # Color palette
  ## Maps
  grid500ij.1 <- list() # Grid for species i at season j
  map.dist.ij.1 <- NULL
  for(j in 1:length(kSeason.1)) { # LOOP 2 - Seasons
    # j assume each season: Inverno, Primavera, Outono
    # Sistematic occurences ===================================================
    sist.i.tmp <- nrow(subset(bd.aves.1, esp == i & cod_tipo %in% sistematica &
      periodo == kSeason.1[j]))
    if (sist.i.tmp!= 0) { # There is sistematic entries, Then:
      sist.i[[j]]<- ddply(subset(bd.aves.1,
                                 esp == i & cod_tipo %in% sistematica & 
                                   periodo == kSeason.1[j]),
                          .(periodo, quad), summarise, nind = sum(n_ind),
                          codnid = max(cod_nidi))
    } else { # No Sistematic entries, Then: 
      sist.i[[j]] <- data.frame('quad' = NA, 'periodo' = NA, 'nind' = NA, 
                                'codnid' = NA, stringsAsFactors = F)
    }
    # Additional Entries (RS1) e other non-sistematic entries  (biblio) =======
    nsist.tmp.i = nrow(subset(bd.aves.1, esp == i & !cod_tipo %in% sistematica &
      periodo == kSeason.1[j]))
    if (nsist.tmp.i != 0) { # RS1 and biblio entries, Then:
      nsist.i[[j]] <- subset(bd.aves.1,
                             esp == i & !cod_tipo %in% sistematica &
                               periodo == kSeason.1[j] & 
                               !quad %in% if (nrow(sist.i[[j]]) != 0) {
                                            subset(sist.i[[j]],
                                                   select = quad)$quad
                                          } else NA,
                             select = c(quad, periodo, cod_tipo, cod_nidi)
                             )
      names(nsist.i[[j]])[4] <- 'codnid'
    } else { # No RS1 and biblio entries, Then:      
        nsist.i[[j]] = data.frame('quad' = NA, 'periodo' = NA, 'cod_tipo' = NA,
                                'codnid' = NA, stringsAsFactors = F)
      }
    # Quantile breaks =========================================================
    if (!is.na(sist.i[[j]]$nind[1])) {
      breaks.nind.1[[j]] <- c(0,
                            unique(
                              ceiling(
                                quantile(unique(
                                  subset(sist.i[[j]], is.na(nind) == F)$nind), 
                                         q = seq(0, 1, by = 0.25)))))
    } else {
        breaks.nind.1[[j]] <- 0
      }
    # =========================================================================
    # Build Species dataframe and merge to grid
    # =========================================================================
    if (!is.na(sist.i[[j]]$nind[1])) { # There are Sistematic entries, Then:
      spij.1[[j]] <- merge(unique(subset(grid500df.1, select = id)),
                         sist.i[[j]],
                         by.x = 'id', by.y = 'quad', all.x = T)
      # Adjust abundances when equals to NA ===================================
      spij.1[[j]]$nind[is.na(spij.1[[j]]$nind) == T] <- 0
      # Break abundances to create discrete variable ==========================
      spij.1[[j]]$cln <- if (length(breaks.nind.1[[j]]) > 2) {
        cut(spij.1[[j]]$nind, breaks = breaks.nind.1[[j]], 
            include.lowest = T, right = F)
        } else {
            cut2(spij.1[[j]]$nind, g = 2)
          }
      # Variable Abundance ====================================================
      classes.1[[j]] = nlevels(spij.1[[j]]$cln)
      cllevels.1[[j]] = levels(spij.1[[j]]$cln)
      # Color Palette for abundances - isolated Zero class (color #FFFFFF) ====
      if (length(breaks.nind.1[[j]]) > 2) {
        palette.nind.1[[paste(kSeason.1[j])]] = c("#FFFFFF", brewer.pal(length(
          cllevels.1[[j]]) - 1, "YlOrRd"))
      } else {
          palette.nind.1[[paste(kSeason.1[j])]] = c(
            "#FFFFFF",  brewer.pal(3, "YlOrRd"))[1:classes.1[[j]]]
        }
        names(palette.nind.1[[paste(kSeason.1[j])]])[1 : length(
          palette.nind.1[[paste(kSeason.1[j])]])] <- cllevels.1[[j]]
      # Add RS1 and bilbio values to palette ==================================
      palette.nind.1[[paste(kSeason.1[j])]][length(
        palette.nind.1[[paste(kSeason.1[j])]]) + 1] <- '#CCC5AF'
      names(palette.nind.1[[paste(kSeason.1[j])]])[length(
        palette.nind.1[[paste(kSeason.1[j])]])] <- 'Suplementar'
      palette.nind.1[[paste(kSeason.1[j])]][length(
        palette.nind.1[[paste(kSeason.1[j])]]) + 1] <- '#ADCCD7'
      names(palette.nind.1[[paste(kSeason.1[j])]])[length(
        palette.nind.1[[paste(kSeason.1[j])]])] <- 'Bibliografia'
      # Merge species i dataframe to grid map =================================
      grid500ij.1[[j]] <- subset(grid500df.1, select = c(id, long, lat, order))
      grid500ij.1[[j]]$cln = merge(grid500ij.1[[j]],
                                 spij.1[[j]],
                                 by.x = 'id', by.y = 'id', all.x = T)$cln
      # Adjust factor levels of cln variable - Non-Sistematic data ============
      levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln), 'Suplementar',
                                      'Bibliografia')
      if (!is.na(nsist.i[[j]]$quad[1])) {
        grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
          nsist.i[[j]], cod_tipo == 'RS1', select = quad)$quad] <- 'Suplementar'
        grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
          nsist.i[[j]], cod_tipo == 'biblio', select = quad)$quad] <- 'Bibliografia'
      }
    } else { # No Sistematic entries, Then:
        if (!is.na(nsist.i[[j]]$quad[1])) { # RS1 or Biblio entries, Then:
          grid500ij.1[[j]] <- grid500df
          grid500ij.1[[j]]$cln <- '0'
          grid500ij.1[[j]]$cln <- factor(grid500ij.1[[j]]$cln)
          levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln),
                                          'Suplementar', 'Bibliografia')
          grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
            nsist.i[[j]], cod_tipo == 'RS1', 
            select = quad)$quad] <- 'Suplementar'
          grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
            nsist.i[[j]],cod_tipo == 'biblio', 
            select = quad)$quad] <- 'Bibliografia'
        } else { # No entries, Then:
            grid500ij.1[[j]] <- grid500df
            grid500ij.1[[j]]$cln <- '0' 
            grid500ij.1[[j]]$cln <- factor(grid500ij.1[[j]]$cln)
            levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln),
                                            'Suplementar', 'Bibliografia')      
          }
      } # End of Species dataframe build
    # Distribution Map for  species i at season j =============================    
    if (!is.na(sist.i[[j]]$nind[1])) { # There is sistematic entries, Then:
      map.dist.ij.1[[paste(kSeason.1[j])]] <- ggplot(grid500ij.1[[j]],
                                                  aes(x = long, y = lat)) +
        geom_polygon(aes(group = id, fill = cln), colour = 'grey80') +
        coord_equal() +
        scale_x_continuous(limits = c(100000, 180000)) +
        scale_y_continuous(limits = c(-4000, 50000)) +
        scale_fill_manual(
          name = paste("LEGEND",
                       '\nSeason: ', kSeason.1[j],
                       '\n% of Occupied Cells : ',
                         sprintf("%.1f%%", (length(unique(
                           grid500ij.1[[j]]$id[grid500ij.1[[j]]$cln != levels(
                           grid500ij.1[[j]]$cln)[1]]))/12)*100), # percent 
                        sep = ""
                       ),
          # Set Limits
          limits = names(palette.nind.1[[j]])[2:length(names(palette.nind.1[[j]]))],
          values = palette.nind.1[[j]][2:length(names(palette.nind.1[[j]]))],
          drop = F) +
          opts(
            panel.background = theme_rect(),
            panel.grid.major = theme_blank(),
            panel.grid.minor = theme_blank(),
            axis.ticks = theme_blank(),
            title = txcon.1$especie[txcon.1$esp == i],
            plot.title = theme_text(size = 10, face = 'italic'),
            axis.text.x = theme_blank(),
            axis.text.y = theme_blank(),
            axis.title.x = theme_blank(),
            axis.title.y = theme_blank(),
            legend.title = theme_text(hjust = 0,size = 10.5),
            legend.text = theme_text(hjust = -0.2, size = 10.5)
          ) +
          # Shoreline
          geom_path(inherit.aes = F, aes(x = long, y = lat),
                    data = coastline.df.1, colour = "#997744") +
          # Add localities
          geom_point(inherit.aes = F, aes(x = x, y = y),  colour = 'grey20',
                     data = localidades, size = 2) +
          # Add labels
          geom_text(inherit.aes = F, aes(x = x, y = y, label = c('Burgau',
                                                                 'Sagres')),
                    colour = "black",
                    data = data.frame(x = c(142817 + kFacx1[1], 127337 + kFacx1[4]),
                                      y = c(11886, 3962), size = 3))
    } else { # NO sistematic entries,then:
        map.dist.ij.1[[paste(kSeason.1[j])]] <- ggplot(grid500ij.1[[j]],
                                                    aes(x = long, y = lat)) +
          geom_polygon(aes.inherit = F, aes(group = id, fill = cln),
                       colour = 'grey80') +
          #scale_color_manual(values = kCorLimiteGrid) +
          coord_equal() +
          scale_x_continuous(limits = c(100000, 40000)) +
          scale_y_continuous(limits = c(-4000, 180000)) +
          scale_fill_manual(
            name = paste('LEGENDA',
                         '\nSeason: ', kSeason.1[j],
                         '\n% of Occupied Cells :',
                         sprintf("%.1f%%", (length(unique(
                           grid500ij.1[[j]]$id[grid500ij.1[[j]]$cln != levels(
                           grid500ij.1[[j]]$cln)[1]]))/12 * 100)), # percent 
                         sep = ''),
            limits = names(kPaletaNsis)[2:length(names(kPaletaNsis))],
            values = kPaletaNsis[2:length(names(kPaletaNsis))],
            drop = F) +
            opts(
              panel.background = theme_rect(),
              panel.grid.major = theme_blank(),
              panel.grid.minor = theme_blank(),
              title = txcon.1$especie[txcon.1$esp == i],
              plot.title = theme_text(size = 10, face = 'italic'),
              axis.ticks = theme_blank(),
              axis.text.x = theme_blank(),
              axis.text.y = theme_blank(),
              axis.title.x = theme_blank(),
              axis.title.y = theme_blank(),
              legend.title = theme_text(hjust = 0,size = 10.5),
              legend.text = theme_text(hjust = -0.2, size = 10.5)
            ) +
            # Add Shoreline
            geom_path(inherit.aes = F, data = coastline.df.1,
                      aes(x = long, y = lat),
                      colour = "#997744") +
            # Add Localities
            geom_point(inherit.aes = F, aes(x = x, y = y),
                       colour = 'grey20',
                       data = localidades, size = 2) +
            # Add labels
            geom_text(inherit.aes = F, aes(x = x, y = y,
                                           label = c('Burgau', 'Sagres')),
                      colour = "black",
                      data = data.frame(x = c(142817 + kFacx1[1],
                                              127337 + kFacx1[4],),
                                        y = c(11886, 3962)),
                      size = 3)
      } # End of Distribution map building for esp i and j seasons
  } # Fim do LOOP 2: j Estacoes
  # Print Maps
  png(file = paste('panel_species',i,'.png', sep = ''), res = 96, 
      width = 800, height = 800)
  ArrangeGraph(map.dist.ij.1[[paste(kSeason.1[3])]],
               map.dist.ij.1[[paste(kSeason.1[2])]],
               map.dist.ij.1[[paste(kSeason.1[1])]],
               ncol = 2, nrow = 2)
  dev.off()
  graphics.off()
} # End of LOOP 1

map.dist.ij.1[[paste(kSeason.1[3])]] は、ポリゴンにカラー パレットが適用された唯一のものですが、凡例項目は j マップごとに明確に定義されています。

R コードを使用した出力

ここに画像の説明を入力

ご覧のとおり、凡例は問題ありませんが、色付けされていません。

何も欠けていないことを願っています。ポルトガル語の用語がいくつか失われてしまい、申し訳ありません。

4

1 に答える 1

1

正直なところ、私はあなたの特定の問題についてあなたのコードをあまり見ていませんでしたprint(plot.l[[i]]).

#Create a list of colors to be used with scale_manual
palette.l <- list()
palette.l[[1]] <- c('red', 'blue', 'green')
palette.l[[2]] <- c('pink', 'blue', 'yellow')

# Store each ggplot in a list object
plot.l <- list()

# Loop it
for(i in 1:2) {
  plot.l[[i]] <- qplot(mpg, wt, data = mtcars, colour = factor(cyl)) +
    scale_colour_manual(values = palette.l[[i]])
  print(plot.l[[i]]) ### Added to your loop
}

ただし、最小限の例の場合、これも機能し (最初にプロットを保存するための空のリストを作成する必要はありません)、少なくともずっときれいに見えると思います。あなたのより大きなシナリオに合わせて同様のものが適応できるかどうかはわかりません。

#Create a list of colors to be used with scale_manual
palette.l <- list(c('red', 'blue', 'green'),
                  c('pink', 'blue', 'yellow'))

p <- qplot(mpg, wt, data = mtcars, colour = factor(cyl))

# Use lapply and "force" to get your plots in a list    
plot.l <- lapply(palette.l, 
                 function(x) { 
                   force(x)
                   p + scale_color_manual(values = x) 
                 })
于 2012-10-21T19:59:09.157 に答える