@David Robinsonの答えは正しいですが、ここにいくつかのプロファイリングを追加して、一部のthngが予想よりも遅い理由を調査する方法を示します。
ここで行う最善のことは、何が呼び出されているかを確認するためにプロファイリングを行うことです。これにより、一部の呼び出しが他の呼び出しよりも遅い理由を知ることができます。
library(profr)
profr(f1())
## Read 9 items
## f level time start end leaf source
## 8 f1 1 0.16 0.00 0.16 FALSE <NA>
## 9 data.frame 2 0.04 0.00 0.04 TRUE base
## 10 $<- 2 0.02 0.04 0.06 FALSE base
## 11 sample 2 0.04 0.06 0.10 TRUE base
## 12 $<- 2 0.06 0.10 0.16 FALSE base
## 13 $<-.data.frame 3 0.12 0.04 0.16 TRUE base
profr(f2())
## Read 15 items
## f level time start end leaf source
## 8 f2 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.frame 2 0.12 0.00 0.12 TRUE base
## 10 : 2 0.02 0.12 0.14 TRUE base
## 11 $<- 2 0.02 0.18 0.20 FALSE base
## 12 sample 2 0.02 0.20 0.22 TRUE base
## 13 $<- 2 0.06 0.22 0.28 FALSE base
## 14 as.data.frame 3 0.08 0.04 0.12 FALSE base
## 15 $<-.data.frame 3 0.10 0.18 0.28 TRUE base
## 16 as.data.frame.character 4 0.08 0.04 0.12 FALSE base
## 17 factor 5 0.08 0.04 0.12 FALSE base
## 18 unique 6 0.06 0.04 0.10 FALSE base
## 19 match 6 0.02 0.10 0.12 TRUE base
## 20 unique.default 7 0.06 0.04 0.10 TRUE base
profr(f3())
## Read 4 items
## f level time start end leaf source
## 8 f3 1 0.06 0.00 0.06 FALSE <NA>
## 9 $<- 2 0.02 0.00 0.02 FALSE base
## 10 sample 2 0.04 0.02 0.06 TRUE base
## 11 $<-.data.frame 3 0.02 0.00 0.02 TRUE base
コンバージョンや再作成などがたくさんあるので、明らかf2()
に遅いです。f1()
character
factor
levels
data.table
メモリを効率的に使用するために、パッケージをお勧めします。これにより、オブジェクトの内部コピーが(可能な限り)回避されます。
library(data.table)
f4 <- function(){
f <- data.table(c1 = 1:n)
f[,c2:=1L:n]
f[,c3:=sample(LETTERS, size= n, replace = TRUE)]
}
system.time(f1())
## user system elapsed
## 0.15 0.02 0.18
system.time(f2())
## user system elapsed
## 0.19 0.00 0.19
system.time(f3())
## user system elapsed
## 0.09 0.00 0.09
system.time(f4())
## user system elapsed
## 0.04 0.00 0.04
data.table
を使用すると、一度に2つの列を追加できることに注意してください(参照により)
# Thanks to @Thell for pointing this out.
f[,`:=`(c('c2','c3'), list(1L:n, sample(LETTERS,n, T))), with = F]
EDIT-必要なオブジェクトを返す関数(@Dwinをうまくピックアップ)
n= 1e7
f1 <- function() {
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
a$c2 <- 1:n
a$c3 <- sample(LETTERS, size = n, replace = TRUE)
a
}
f2 <- function() {
b <- data.frame(c1 = 1:n, c2 = numeric(n), c3 = character(n))
b$c2 <- 1:n
b$c3 <- sample(LETTERS, size = n, replace = TRUE)
b
}
f3 <- function() {
c <- data.frame(c1 = 1:n)
c$c2 <- 1:n
c$c3 <- sample(LETTERS, size = n, replace = TRUE)
c
}
f4 <- function() {
f <- data.table(c1 = 1:n)
f[, `:=`(c2, 1L:n)]
f[, `:=`(c3, sample(LETTERS, size = n, replace = TRUE))]
}
system.time(f1())
## user system elapsed
## 1.62 0.34 2.13
system.time(f2())
## user system elapsed
## 2.14 0.66 2.79
system.time(f3())
## user system elapsed
## 0.78 0.25 1.03
system.time(f4())
## user system elapsed
## 0.37 0.08 0.46
profr(f1())
## Read 105 items
## f level time start end leaf source
## 8 f1 1 2.08 0.00 2.08 FALSE <NA>
## 9 data.frame 2 0.66 0.00 0.66 FALSE base
## 10 : 2 0.02 0.66 0.68 TRUE base
## 11 $<- 2 0.32 0.84 1.16 FALSE base
## 12 sample 2 0.40 1.16 1.56 TRUE base
## 13 $<- 2 0.32 1.76 2.08 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.12 0.54 0.66 TRUE base
## 17 $<-.data.frame 3 1.24 0.84 2.08 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f2())
## Read 145 items
## f level time start end leaf source
## 8 f2 1 2.88 0.00 2.88 FALSE <NA>
## 9 data.frame 2 1.40 0.00 1.40 FALSE base
## 10 : 2 0.04 1.40 1.44 TRUE base
## 11 $<- 2 0.36 1.64 2.00 FALSE base
## 12 sample 2 0.40 2.00 2.40 TRUE base
## 13 $<- 2 0.36 2.52 2.88 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 numeric 3 0.06 0.02 0.08 TRUE base
## 16 character 3 0.04 0.08 0.12 TRUE base
## 17 as.data.frame 3 1.06 0.12 1.18 FALSE base
## 18 unlist 3 0.20 1.20 1.40 TRUE base
## 19 $<-.data.frame 3 1.24 1.64 2.88 TRUE base
## 20 as.data.frame.integer 4 0.04 0.12 0.16 TRUE base
## 21 as.data.frame.numeric 4 0.16 0.18 0.34 TRUE base
## 22 as.data.frame.character 4 0.78 0.40 1.18 FALSE base
## 23 factor 5 0.74 0.40 1.14 FALSE base
## 24 as.data.frame.vector 5 0.04 1.14 1.18 TRUE base
## 25 unique 6 0.38 0.40 0.78 FALSE base
## 26 match 6 0.32 0.78 1.10 TRUE base
## 27 unique.default 7 0.38 0.40 0.78 TRUE base
profr(f3())
## Read 37 items
## f level time start end leaf source
## 8 f3 1 0.72 0.00 0.72 FALSE <NA>
## 9 data.frame 2 0.10 0.00 0.10 FALSE base
## 10 : 2 0.02 0.10 0.12 TRUE base
## 11 $<- 2 0.08 0.14 0.22 FALSE base
## 12 sample 2 0.26 0.22 0.48 TRUE base
## 13 $<- 2 0.16 0.56 0.72 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.02 0.08 0.10 TRUE base
## 17 $<-.data.frame 3 0.58 0.14 0.72 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f4())
## Read 15 items
## f level time start end leaf source
## 8 f4 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.table 2 0.02 0.00 0.02 FALSE data.table
## 10 [ 2 0.26 0.02 0.28 FALSE base
## 11 : 3 0.02 0.00 0.02 TRUE base
## 12 [.data.table 3 0.26 0.02 0.28 FALSE <NA>
## 13 eval 4 0.26 0.02 0.28 FALSE base
## 14 eval 5 0.26 0.02 0.28 FALSE base
## 15 : 6 0.02 0.02 0.04 TRUE base
## 16 sample 6 0.24 0.04 0.28 TRUE base