6

私はこのような画像を持っています:

ここに画像の説明を入力 ここに画像の説明を入力 ここに画像の説明を入力 ここに画像の説明を入力

この画像では、赤い線が画像から取得したいものです。元の画像には赤い線はなく、緑の道路しかありません。

私が望むのは、方程式の係数の形で画像から曲線を推定することです: A x^2 + B x + C = 0.画像にはノイズ (上記のようにエッジにブラック ホール) が存在する可能性があります。

最小二乗法 (LSM) を使用してこれを解決しようとしましたが、このアプローチには 2 つの問題があります。

  1. PCでもポイントが高いのでやり方が遅いです。

  2. 次の場合、道路が広すぎます。

左側の画像の曲線は正しく認識されていますが、右側の曲線は正しく認識されていません。その理由は、道が広すぎて短すぎるからだと思います。 画像を入力してください

両方の場合の解決策として、道を狭くしたい。理想的には、上の画像の赤い線です。または、処理時間の最適化のためにライン検出 (A x + B = 0) に LSM を使用したい。

私は画像を侵食しようとしました - それは間違ったアプローチです。スケルトンも適切なソリューションではありません。

望ましい結果を達成する方法についてのアイデアはありますか (道を狭くする)? または、この問題に対する別のアプローチのアイデアはありますか?

4

1 に答える 1

1

フィットの従属変数として常に 1 つの軸を持つことに依存できる場合 (x上記の「正しい」例では軸である必要があるように見えますが、右下の失敗は を使用yしているようです)、次のようなことができます。 :

  • スキャンラインごとに、黒以外のピクセルyの中央値を選択しますx
  • 黒以外のピクセルがない場合 (または選択したノイズしきい値より少ない場合)、その行をスキップします

これでペアのリストができました(x,y)。多くてもスキャン ラインと同数です。これらは、各レベルでの道路の中点に関する推測を表しています。低次多項式x=f(y) (線形または 3 次を使用しますが、必要に応じて 2 次を行うこともできます) を最小二乗法でこれらの点に当てはめます。

あなたが示した種類の画像では、詳細が非常に粗いため、ポイントのサブセットだけで管理できる場合があります. ただし、それがなくても、非常に制約のあるハードウェアを使用していない限り、処理コストは妥当なはずです。

左右のパスが頻繁に発生する場合は、両方の方法を適合させてから、ある種の適合基準を適用できます。パスが頻繁にループバックする場合、この種のミッドポイント アプローチでは適切な答えが得られませんが、いずれにせよフィッティングで敗者になります。

于 2012-09-04T09:41:11.197 に答える