52

さまざまな日付範囲内で繰り返し測定されたワイド フォーマットのデータフレームがあります。私の例では、3 つの異なる期間があり、すべて対応する値があります。たとえば、最初の測定 ( ) は からまでValue1の期間に測定されました。DateRange1StartDateRange1End

ID DateRange1Start DateRange1End Value1 DateRange2Start DateRange2End Value2 DateRange3Start DateRange3End Value3
1 1/1/90 3/1/90 4.4 4/5/91 6/7/91 6.2 5/5/95 6/6/96 3.3 

DateRangeXStart 列と DateRangeXEnd 列がグループ化されるように、データを長い形式に再形成しようとしています。したがって、元のテーブルの 1 行は、新しいテーブルでは 3 行になります。

ID DateRangeStart DateRangeEnd Value
1 1/1/90 3/1/90 4.4
1 4/5/91 6/7/91 6.2
1 5/5/95 6/6/96 3.3

reshape2/ melt/ recast/でこれを行う方法があるに違いないことはわかっていtidyrますが、この特定の方法で、メジャー変数の複数のセットを値列の単一のセットにマップする方法を理解できないようです。

4

8 に答える 8

41
reshape(dat, idvar="ID", direction="long", 
             varying=list(Start=c(2,5,8), End=c(3,6,9), Value=c(4,7,10)),
             v.names = c("DateRangeStart", "DateRangeEnd", "Value") )
#-------------
    ID time DateRangeStart DateRangeEnd Value
1.1  1    1          1/1/90        3/1/90    4.4
1.2  1    2          4/5/91        6/7/91    6.2
1.3  1    3          5/5/95        6/6/96    3.3

(Josh の提案に従って v.names を追加しました。)

于 2012-09-17T20:31:51.047 に答える
35

data.tablemelt関数は複数の列に溶け込む可能性があります。それを使用して、次のことを簡単に実行できます。

require(data.table)
melt(setDT(dat), id=1L,
     measure=patterns("Start$", "End$", "^Value"), 
     value.name=c("DateRangeStart", "DateRangeEnd", "Value"))

#    ID variable DateRangeStart DateRangeEnd Value
# 1:  1        1         1/1/90       3/1/90   4.4
# 2:  1        2         4/5/91       6/7/91   6.2
# 3:  1        3         5/5/95       6/6/96   3.3

または、列の位置によって 3 つのメジャー列のセットを参照することもできます。

melt(setDT(dat), id = 1L, 
     measure = list(c(2,5,8), c(3,6,9), c(4,7,10)), 
     value.name = c("DateRangeStart", "DateRangeEnd", "Value"))
于 2015-02-28T20:30:21.060 に答える
8

2 つの追加オプション (コードの動作をよりよく示すために、複数の行を持つサンプル データフレームを使用):

1) ベース R:

l <- lapply(split.default(d[-1], cumsum(grepl('Start$', names(d)[-1]))),
            setNames, c('DateRangeStart','DateRangeEnd','Value'))
data.frame(ID = d[,1], do.call(rbind, l), row.names = NULL)

与える:

  ID DateRangeStart DateRangeEnd Value
1  1         1/1/90       3/1/90   4.4
2  2         1/2/90       3/2/90   6.1
3  1         4/5/91       6/7/91   6.2
4  2         4/6/91       6/8/91   3.2
5  1         5/5/95       6/6/96   3.3
6  2         5/5/97       6/6/98   1.3

2) でtidyverse:

library(dplyr)
library(purrr)

split.default(d[-1], cumsum(grepl('Start$', names(d)[-1]))) %>%
  map_dfr(~set_names(., c('DateRangeStart','DateRangeEnd','Value'))) %>% 
  bind_cols(ID = rep(d$ID, nrow(.)/nrow(d)), .)

3) sjmisc-package:

library(sjmisc)
to_long(d, keys = 'group',
        values = c('DateRangeStart','DateRangeEnd','Value'), 
        c('DateRange1Start','DateRange2Start','DateRange3Start'),
        c('DateRange1End','DateRange2End','DateRange3End'),
        c('Value1','Value2','Value3'))[,-2]

グループ/時間列も必要な場合は、上記のアプローチを次のように適応させることができます。

1) ベース R:

l <- lapply(split.default(d[-1], cumsum(grepl('Start$', names(d)[-1]))),
            setNames, c('DateRangeStart','DateRangeEnd','Value'))
data.frame(ID = d[,1],
           group = rep(seq_along(l), each = nrow(d)),
           do.call(rbind, l), row.names = NULL)

与える:

  ID group DateRangeStart DateRangeEnd Value
1  1     1         1/1/90       3/1/90   4.4
2  2     1         1/2/90       3/2/90   6.1
3  1     2         4/5/91       6/7/91   6.2
4  2     2         4/6/91       6/8/91   3.2
5  1     3         5/5/95       6/6/96   3.3
6  2     3         5/5/97       6/6/98   1.3

2) でtidyverse:

split.default(d[-1], cumsum(grepl('Start$', names(d)[-1]))) %>%
  map_dfr(~set_names(., c('DateRangeStart','DateRangeEnd','Value'))) %>% 
  bind_cols(ID = rep(d$ID, nrow(.)/nrow(d)),
            group = rep(1:(nrow(.)/nrow(d)), each = nrow(d)), .)

3) sjmisc-package:

library(sjmisc)
to_long(d, keys = 'group', recode.key = TRUE,
        values = c('DateRangeStart','DateRangeEnd','Value'), 
        c('DateRange1Start','DateRange2Start','DateRange3Start'),
        c('DateRange1End','DateRange2End','DateRange3End'),
        c('Value1','Value2','Value3'))

使用データ:

d <- read.table(text = "ID DateRange1Start DateRange1End Value1 DateRange2Start DateRange2End Value2 DateRange3Start DateRange3End Value3
1 1/1/90 3/1/90 4.4 4/5/91 6/7/91 6.2 5/5/95 6/6/96 3.3
2 1/2/90 3/2/90 6.1 4/6/91 6/8/91 3.2 5/5/97 6/6/98 1.3", header = TRUE, stringsAsFactors = FALSE)
于 2017-11-26T07:02:26.287 に答える
2

リサイクルの使用:

data.frame(ID = d[, 1],
           DateRangeStart = unlist(d[, -1][, c(TRUE, FALSE, FALSE)]),
           DateRangeEnd  = unlist(d[, -1][, c(FALSE, TRUE, FALSE)]),
           Value =  unlist(d[, -1][, c(FALSE, FALSE, TRUE)]))
于 2018-04-10T11:00:01.563 に答える
0

凝ったものは必要ありません。基本R機能で十分です。

a <- read.table(textConnection("
ID DateRange1Start DateRange1End Value1 DateRange2Start DateRange2End Value2 DateRange3Start DateRange3End Value3
1 1/1/90 3/1/90 4.4 4/5/91 6/7/91 6.2 5/5/95 6/6/96 3.3 
"),header=TRUE)
b1 <- a[,c(1:4)]; b2 <- a[,c(1,5:7)]; b3 <- a[,c(1,8:10)]
colnames(b1) <- colnames(b2) <- colnames(b3) <- c("ID","DateRangeStart","DateRangeEnd","Value")
b <- rbind(b1,b2,b3)
于 2012-09-17T20:29:28.557 に答える