6

繰り返しサブセット化する必要がある大きなデータ フレーム (100 万行以上 x 6 ~ 10 列) がいくつかあります。サブセット化セクションは私のコードの最も遅い部分であり、これをより速く行う方法があるかどうか知りたい.

load("https://dl.dropbox.com/u/4131944/Temp/DF_IOSTAT_ALL.rda")
start_in <- strptime("2012-08-20 13:00", "%Y-%m-%d %H:%M")
end_in<- strptime("2012-08-20 17:00", "%Y-%m-%d %H:%M")
system.time(DF_IOSTAT_INT <- DF_IOSTAT_ALL[DF_IOSTAT_ALL$date_stamp >= start_in & DF_IOSTAT_ALL$date_stamp <= end_in,])

> system.time(DF_IOSTAT_INT <- DF_IOSTAT_ALL[DF_IOSTAT_ALL$date_stamp >= start_in & DF_IOSTAT_ALL$date_stamp <= end_in,])
   user  system elapsed 
  16.59    0.00   16.60 

dput(head(DF_IOSTAT_ALL))
structure(list(date_stamp = structure(list(sec = c(14, 24, 34, 
44, 54, 4), min = c(0L, 0L, 0L, 0L, 0L, 1L), hour = c(0L, 0L, 
0L, 0L, 0L, 0L), mday = c(20L, 20L, 20L, 20L, 20L, 20L), mon = c(7L, 
7L, 7L, 7L, 7L, 7L), year = c(112L, 112L, 112L, 112L, 112L, 112L
), wday = c(1L, 1L, 1L, 1L, 1L, 1L), yday = c(232L, 232L, 232L, 
232L, 232L, 232L), isdst = c(1L, 1L, 1L, 1L, 1L, 1L)), .Names = c("sec", 
"min", "hour", "mday", "mon", "year", "wday", "yday", "isdst"
), class = c("POSIXlt", "POSIXt")), cpu = c(0.9, 0.2, 0.2, 0.1, 
0.2, 0.1), rsec_s = c(0, 0, 0, 0, 0, 0), wsec_s = c(0, 3.8, 0, 
0.4, 0.2, 0.2), util_pct = c(0, 0.1, 0, 0, 0, 0), node = c("bda101", 
"bda101", "bda101", "bda101", "bda101", "bda101")), .Names = c("date_stamp", 
"cpu", "rsec_s", "wsec_s", "util_pct", "node"), row.names = c(NA, 
6L), class = "data.frame")
4

2 に答える 2

1

これが私の実験data.tableです。興味深いことに、への変換だけでdata.table、おそらく論理ベクトルへのより効率的なルックアップを通じて、ルックアップが高速になります。私は4つのことを比較しました。元のデータフレームルックアップ。POSIXltからPOSIXctへの変換を伴うルックアップ(Matthew Dowleに感謝)。データテーブルルックアップ。コピーと変換の設定に加えて、データテーブルのルックアップ。追加の設定を使用しても、データテーブルルックアップが優先されます。複数のルックアップを使用すると、時間をさらに節約できます。

library(data.table)
library(rbenchmark)
load("DF_IOSTAT_ALL.rda")
DF_IOSTAT_ALL.original <- DF_IOSTAT_ALL

start_in <- strptime("2012-08-20 13:00", "%Y-%m-%d %H:%M")
end_in<- strptime("2012-08-20 17:00", "%Y-%m-%d %H:%M")
#function to test: original
fun <- function() DF_IOSTAT_INT <<- DF_IOSTAT_ALL.original[DF_IOSTAT_ALL.original$date_stamp >= start_in & DF_IOSTAT_ALL.original$date_stamp <= end_in,]
#function to test: changing to POSIXct
DF_IOSTAT_ALL.ct <- within(DF_IOSTAT_ALL.original,date_stamp <- as.POSIXct(date_stamp))
fun.ct <- function() DF_IOSTAT_INT <<- DF_IOSTAT_ALL.ct[with(DF_IOSTAT_ALL.ct,date_stamp >= start_in & date_stamp <= end_in),]
#function to test: with data.table and POSIXct
DF_IOSTAT_ALL.dt <- as.data.table(DF_IOSTAT_ALL.ct);
fun.dt <- function() DF_IOSTAT_INT <<- DF_IOSTAT_ALL.dt[date_stamp >= start_in & date_stamp <= end_in,]
#function to test: with data table and POSIXct, with setup steps
newfun <- function() {
    DF_IOSTAT_ALL <- DF_IOSTAT_ALL.original;
    #data.table doesn't play well with POSIXlt, so convert to POSIXct
    DF_IOSTAT_ALL$date_stamp <- as.POSIXct(DF_IOSTAT_ALL$date_stamp);
    DF_IOSTAT_ALL <- data.table(DF_IOSTAT_ALL);
    DF_IOSTAT_INT <<- DF_IOSTAT_ALL[date_stamp >= start_in & date_stamp <= end_in,];
}
benchmark(fun(), fun.ct(), fun.dt(), newfun(), replications=3,order="relative")

#      test replications elapsed   relative user.self sys.self user.child sys.child
#3 fun.dt()            3    0.18   1.000000      0.11     0.08         NA        NA
#2 fun.ct()            3    0.52   2.888889      0.44     0.08         NA        NA
#4 newfun()            3   35.49 197.166667     34.88     0.58         NA        NA
#1    fun()            3   66.68 370.444444     66.42     0.15         NA        NA

時間間隔が事前にわかっている場合は、findIntervalまたはを使用して分割しcut、テーブルにキー入力/インデックスを作成することで、さらに高速化できます。

DF_IOSTAT_ALL <- copy(DF_IOSTAT_ALL.new)
time.breaks <- strptime.d("2012-08-19 19:00:00") + 0:178 * 60 * 60 #by hour
DF_IOSTAT_ALL[,interval := findInterval(date_stamp,time.breaks)]
setkey(DF_IOSTAT_ALL,interval)

start_in <- time.breaks[60]
end_in <- time.breaks[61]
benchmark(a <- DF_IOSTAT_ALL[J(60)],b <- fun2(DF_IOSTAT_ALL))
#                  test replications elapsed relative user.self sys.self user.child sys.child
#1 DF_IOSTAT_ALL[J(60)]          100    0.78 1.000000      0.64     0.14         NA        NA
#2  fun2(DF_IOSTAT_ALL)          100    6.69 8.576923      5.76     0.91         NA        NA
all.equal(a,b[,.SD,.SDcols=c(12,1:11,13)]) #test for equality (rearranging columns to match)
#TRUE
于 2012-09-19T11:38:20.953 に答える
1

これには xts を使用します。唯一の潜在的な問題は、xts が順序付けられたインデックス属性を持つマトリックスであるため、data.frame のように型を混在させることができないことです。

ノード列が不変の場合は、xts オブジェクトから除外できます。

library(xts)
x <- xts(DF_IOSTAT_ALL[,2:5], as.POSIXct(DF_IOSTAT_ALL$date_stamp))
x["2012-08-20 00:00:24/2012-08-20 00:00:54"]

OP の実際のデータを使用して更新します。

Data <- DF_IOSTAT_ALL
# change node from character to numeric,
# so it can exist in the xts object too.
Data$node <- as.numeric(gsub("^bda","",Data$node)
# create the xts object
x <- xts(Data[,-1], as.POSIXct(Data$date_stamp))
# subset one day
system.time(x['2012-08-20 13:00/2012-08-20 17:00'])
#    user  system elapsed 
#       0       0       0
# subset 13:00-17:00 for all days
system.time(x['T13:00/T17:00'])
#    user  system elapsed 
#    2.64    0.00    2.66
于 2012-09-18T15:36:16.293 に答える