#include "iostream"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "cv.h"
#include "highgui.h"
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/flann/flann.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <vector>
using namespace cv;
using namespace std;
int main()
{
Mat image1,image2;
image1 = imread("C:\\lena.jpg",0);
image2 = imread("C:\\lena1.bmp",0);
vector<KeyPoint> keypointsA,keypointsB;
Mat descriptorsA,descriptorsB;
std::vector<DMatch> matches;
OrbFeatureDetector detector(400);
FREAK extractor;
BruteForceMatcher<Hamming> matcher;
detector.detect(image1,keypointsA);
detector.detect(image2,keypointsB);
extractor.compute(image1,keypointsA,descriptorsA);
extractor.compute(image2,keypointsB,descriptorsB);
matcher.match(descriptorsA, descriptorsB, matches);
int nofmatches = 30;
nth_element(matches.begin(),matches.begin()+nofmatches,matches.end());
matches.erase(matches.begin()+nofmatches+1,matches.end());
Mat imgMatch;
drawMatches(image1, keypointsA, image2, keypointsB, matches, imgMatch);
imshow("matches", imgMatch);
waitKey(0);
return 0;
}
これは、2 つの画像のポイントを一致させる単純なアプリケーションです...キーポイントを検出するために Orb を使用し、それらのキーポイントの記述子として FREAK を使用しました...次に、2 つの画像の対応するポイントを検出するために brutforcematching を使用しました...上位 30 ポイントを取得しましたベストマッチ...これがあなたの助けになることを願っています...