これがあなたのコードの適応です。より多くの空白を使用することを除いて、主な変更はNDEPS
、関数への引数を作成するnthDerivative()
ことです。これにより、さまざまな値で呼び出すことができ、大量の印刷を追加できます。私はまた、単純なderivative()
機能について独創的にならなければなりませんでした。コードは正しくコンパイルされます(ただし、アサーションを使用して哲学的または神学的なステートメントを作成しようとはしていませんassert(sin == fun);
が、コードが警告なしにコンパイルされ、この派生関数の制限を認識していることを意味します)。
コード
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define PRIe_double "%21.15e"
typedef double(*math_func)(double x);
static double derivative(math_func fun, double x) { assert(sin == fun); return cos(x); }
static double nthDerivative(math_func f, double x, int N, double NDEPS)
{
if (N < 0) return NAN; //bogus value of N
if (N == 0) return f(x);
if (N == 1) return derivative(f, x);
double* vals = calloc(2*N+9, sizeof(double)); //buffer region around the real values
if (vals == NULL) //oops! no memory
return NAN;
int i, j;
//don't take too small a finite difference
double h = max(sqrt(DBL_EPSILON)*x, NDEPS);
printf("h = " PRIe_double "\n", h);
for (i = -(N+4); i <= N+4; i++)
{
vals[i+N+4] = derivative(f, x+h*i);
printf("%2d: deriv(" PRIe_double ") = " PRIe_double "\n", i, x+h*i, vals[i+N+4]);
}
for (j = 1; j < N; j++)
{
printf("Iteration %d\n", j);
double *vals2 = calloc(2*N+9, sizeof(double));
for (i = 2; i < 2*N+7; i++){
vals2[i] = (-vals[i+2] + 8*vals[i+1] - 8*vals[i-1] + vals[i-2]) / (12*h);
}
free(vals);
vals = vals2;
for (i = 0; i < 2*N+9; i++)
printf("%2d: " PRIe_double "\n", i, vals[i]);
}
double result = vals[N+4];
free(vals);
return result;
}
int main(void)
{
double val = M_PI;
double eps;
double r;
eps = 1.0 / 64.0;
r = nthDerivative(sin, val, 5, eps);
printf("5th Derivative of sin(x) at x = " PRIe_double " = " PRIe_double " (eps = %f)\n", val, r, eps);
eps = 1.0 / 100000.0;
r = nthDerivative(sin, val, 5, eps);
printf("5th Derivative of sin(x) at x = " PRIe_double " = " PRIe_double " (eps = %f)\n", val, r, eps);
return(0);
}
出力
Mac OS X10.7.5でGCC4.7.1を使用すると、出力は次のようになります。
h = 1.562500000000000e-02
-9: deriv(3.000967653589793e+00) = -9.901285883701071e-01
-8: deriv(3.016592653589793e+00) = -9.921976672293290e-01
-7: deriv(3.032217653589793e+00) = -9.940245152582091e-01
-6: deriv(3.047842653589793e+00) = -9.956086864580017e-01
-5: deriv(3.063467653589793e+00) = -9.969497940760287e-01
-4: deriv(3.079092653589793e+00) = -9.980475107000991e-01
-3: deriv(3.094717653589793e+00) = -9.989015683384429e-01
-2: deriv(3.110342653589793e+00) = -9.995117584851364e-01
-1: deriv(3.125967653589793e+00) = -9.998779321710066e-01
0: deriv(3.141592653589793e+00) = -1.000000000000000e+00
1: deriv(3.157217653589793e+00) = -9.998779321710066e-01
2: deriv(3.172842653589793e+00) = -9.995117584851364e-01
3: deriv(3.188467653589793e+00) = -9.989015683384429e-01
4: deriv(3.204092653589793e+00) = -9.980475107000991e-01
5: deriv(3.219717653589793e+00) = -9.969497940760287e-01
6: deriv(3.235342653589793e+00) = -9.956086864580017e-01
7: deriv(3.250967653589793e+00) = -9.940245152582091e-01
8: deriv(3.266592653589793e+00) = -9.921976672293291e-01
9: deriv(3.282217653589793e+00) = -9.901285883701071e-01
Iteration 1
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: -1.091570566584531e-01
3: -9.361273104952932e-02
4: -7.804555123490846e-02
5: -6.245931771829009e-02
6: -4.685783565504131e-02
7: -3.124491392324735e-02
8: -1.562436419383969e-02
9: -1.776356839400250e-15
10: 1.562436419384087e-02
11: 3.124491392324558e-02
12: 4.685783565504250e-02
13: 6.245931771828653e-02
14: 7.804555123490846e-02
15: 9.361273104953050e-02
16: 1.091570566584471e-01
17: 0.000000000000000e+00
18: 0.000000000000000e+00
Iteration 2
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: -3.577900251527073e+00
3: 1.660540592568783e+00
4: 9.969497901146779e-01
5: 9.980475067341610e-01
6: 9.989015643694564e-01
7: 9.995117545137316e-01
8: 9.998779281977730e-01
9: 9.999999960264082e-01
10: 9.998779281978486e-01
11: 9.995117545137319e-01
12: 9.989015643693869e-01
13: 9.980475067340947e-01
14: 9.969497901149178e-01
15: 1.660540592568512e+00
16: -3.577900251527123e+00
17: 0.000000000000000e+00
18: 0.000000000000000e+00
Iteration 3
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: 6.553266640232313e+01
3: 1.898706817407991e+02
4: -5.267598134705870e+01
5: 3.608762837830827e+00
6: 4.685783548517186e-02
7: 3.124491378285654e-02
8: 1.562436412277357e-02
9: 3.226456139297321e-12
10: -1.562436412279785e-02
11: -3.124491378869069e-02
12: -4.685783548888563e-02
13: -3.608762837816180e+00
14: 5.267598134704988e+01
15: -1.898706817408119e+02
16: -6.553266640231030e+01
17: 0.000000000000000e+00
18: 0.000000000000000e+00
Iteration 4
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: 8.382087654791743e+03
3: -5.062815705775390e+03
4: -7.597917560836845e+03
5: 3.261984801532626e+03
6: -4.336626618856812e+02
7: 1.791410702361821e+01
8: -9.998779233550453e-01
9: -9.999999914294619e-01
10: -9.998779238596159e-01
11: 1.791410702341709e+01
12: -4.336626618847606e+02
13: 3.261984801532444e+03
14: -7.597917560838102e+03
15: -5.062815705774387e+03
16: 8.382087654792240e+03
17: 0.000000000000000e+00
18: 0.000000000000000e+00
5th Derivative of sin(x) at x = 3.141592653589793e+00 = -9.999999914294619e-01 (eps = 0.015625)
h = 1.000000000000000e-05
-9: deriv(3.141502653589793e+00) = -9.999999959500000e-01
-8: deriv(3.141512653589793e+00) = -9.999999968000000e-01
-7: deriv(3.141522653589793e+00) = -9.999999975500000e-01
-6: deriv(3.141532653589793e+00) = -9.999999982000000e-01
-5: deriv(3.141542653589793e+00) = -9.999999987500000e-01
-4: deriv(3.141552653589793e+00) = -9.999999992000000e-01
-3: deriv(3.141562653589793e+00) = -9.999999995500000e-01
-2: deriv(3.141572653589793e+00) = -9.999999998000000e-01
-1: deriv(3.141582653589793e+00) = -9.999999999500000e-01
0: deriv(3.141592653589793e+00) = -1.000000000000000e+00
1: deriv(3.141602653589793e+00) = -9.999999999500000e-01
2: deriv(3.141612653589793e+00) = -9.999999998000000e-01
3: deriv(3.141622653589793e+00) = -9.999999995500000e-01
4: deriv(3.141632653589793e+00) = -9.999999992000000e-01
5: deriv(3.141642653589793e+00) = -9.999999987500000e-01
6: deriv(3.141652653589793e+00) = -9.999999982000000e-01
7: deriv(3.141662653589793e+00) = -9.999999975500000e-01
8: deriv(3.141672653589793e+00) = -9.999999968000000e-01
9: deriv(3.141682653589793e+00) = -9.999999959500000e-01
Iteration 1
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: -7.000000116589669e-05
3: -5.999999941330713e-05
4: -5.000000598739025e-05
5: -3.999999683331386e-05
6: -2.999999600591015e-05
7: -2.000000257999327e-05
8: -1.000000082740371e-05
9: 0.000000000000000e+00
10: 1.000000082740371e-05
11: 2.000000165480742e-05
12: 2.999999508072429e-05
13: 3.999999590812801e-05
14: 5.000000413701854e-05
15: 5.999999663774957e-05
16: 6.999999746515327e-05
17: 0.000000000000000e+00
18: 0.000000000000000e+00
Iteration 2
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: -3.583333244325556e+00
3: 1.666666318844711e+00
4: 1.000000128999663e+00
5: 1.000000691821058e+00
6: 9.999995738881511e-01
7: 9.999997049561470e-01
8: 1.000000198388602e+00
9: 1.000000075030488e+00
10: 1.000000144419428e+00
11: 9.999996509869722e-01
12: 9.999995893079155e-01
13: 1.000000645561765e+00
14: 1.000000028771196e+00
15: 1.666666187776715e+00
16: -3.583333074708150e+00
17: 0.000000000000000e+00
18: 0.000000000000000e+00
Iteration 3
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: 1.027777535146502e+05
3: 2.972222191231725e+05
4: -8.263881528669108e+04
5: 5.555518108303881e+03
6: -6.636923522614542e-02
7: 4.677328483600658e-02
8: 1.991719546327412e-02
9: -3.148201866790915e-03
10: -2.319389535987426e-02
11: -4.176186143567406e-02
12: 6.726872146719150e-02
13: -5.555525175695851e+03
14: 8.263880834779718e+04
15: -2.972222015189417e+05
16: -1.027777456120210e+05
17: 0.000000000000000e+00
18: 0.000000000000000e+00
狂気の兆候...
Iteration 4
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: 2.050347140226725e+10
3: -1.240740057099195e+10
4: -1.858796490195886e+10
5: 7.986101364079453e+09
6: -1.059021715700324e+09
7: 4.630176289959386e+07
8: -3.687893612405425e+03
9: -2.136279835945886e+03
10: -2.968840021291520e+03
11: 4.630204773690500e+07
12: -1.059022490436399e+09
13: 7.986100736580715e+09
14: -1.858796331554353e+10
15: -1.240739964045201e+10
16: 2.050347017082775e+10
17: 0.000000000000000e+00
18: 0.000000000000000e+00
5th Derivative of sin(x) at x = 3.141592653589793e+00 = -2.136279835945886e+03 (eps = 0.000010)
最後の反復で結果が数十億の値でどのように悪化しているかに注意してください。少なくとも数値安定性の問題があるか、微分公式を確認する必要があります。より大きなイプシロンを使用した実行でさえ、後の反復で値が大きくなる傾向があることに注意してください。
「公式」derivative()
機能の使用
質問に現在存在する微分関数を上記のコードにプラグインすると、4回目の反復でさらに不安定な答えが得られます。
Iteration 4
0: 0.000000000000000e+00
1: 0.000000000000000e+00
2: -6.248925477935563e+09
3: 1.729549900845405e+11
4: -2.600544559219368e+11
5: -2.755286326619338e+11
6: 8.100546069731433e+11
7: -2.961111189495415e+09
8: -7.936480686806423e+11
9: 2.430177384467434e+11
10: 2.389084910067162e+11
11: -6.461168564124718e+10
12: -4.574822745530297e+10
13: -8.923883451146609e+10
14: 7.042030613792160e+10
15: 4.988386306820556e+10
16: -1.793262395787471e+10
17: 0.000000000000000e+00
18: 0.000000000000000e+00
5th Derivative of sin(x) at x = 3.141592653589793e+00 = 2.430177384467434e+11 (eps = 0.000010)
配列インデックス0、1、17、および18でのゼロの出現は、問題をどの程度悪化させるのだろうか。