入力ベクトルが常にソートされていると仮定すると、このようなものがうまくいくと思います。これは私が思いついた最も単純な形式で、パフォーマンスは O(log n) です。
bool inRange(int lval, int uval, int ar[], size_t n)
{
if (0 == n)
return false;
size_t mid = n/2;
if (ar[mid] >= std::min(lval,uval))
{
if (ar[mid] <= std::max(lval,uval))
return true;
return inRange(lval, uval, ar, mid);
}
return inRange(lval, uval, ar+mid+1, n-mid-1);
}
これは暗黙の範囲差分を使用します。つまり、常に 2 つの値の低い方を下限として使用し、2 つの値のうち高い方を上限として使用します。lval
およびの入力値をuval
ゴスペルとして扱うことが使用法で義務付けられている場合、およびそのためのすべての呼び出しがfalse を返す必要がある場合 (それは不可能であるため)、および展開lval > uval
を削除できます。いずれの場合も、外側のフロントローダーを作成し、(a) 絶対的な順序付けが必要な場合はすぐに false として返す、または (b) lval と uval を適切に事前に決定する、の順序を事前にチェックすることで、パフォーマンスをさらに向上させることができます。範囲差が必要な場合は注文してください。このような両方の外部ラッパーの例を以下に示します。std::min()
std::max()
lval
uval
lval > uval
// search for any ar[i] such that (lval <= ar[i] <= uval)
// assumes ar[] is sorted, and (lval <= uval).
bool inRange_(int lval, int uval, int ar[], size_t n)
{
if (0 == n)
return false;
size_t mid = n/2;
if (ar[mid] >= lval)
{
if (ar[mid] <= uval)
return true;
return inRange_(lval, uval, ar, mid);
}
return inRange_(lval, uval, ar+mid+1, n-mid-1);
}
// use lval and uval as an hard range of [lval,uval].
// i.e. short-circuit the impossible case of lower-bound
// being greater than upper-bound.
bool inRangeAbs(int lval, int uval, int ar[], size_t n)
{
if (lval > uval)
return false;
return inRange_(lval, uval, ar, n);
}
// use lval and uval as un-ordered limits. i.e always use either
// [lval,uval] or [uval,lval], depending on their values.
bool inRange(int lval, int uval, int ar[], size_t n)
{
return inRange_(std::min(lval,uval), std::max(lval,uval), ar, n);
}
あなたが欲しいと思うものを として残しましたinRange
。メイン ケースとエッジ ケースをうまくカバーするために実行された単体テストと、結果の出力を以下に示します。
#include <iostream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <iterator>
int main(int argc, char *argv[])
{
int A[] = {5,10,25,30,50,100,200,500,1000,2000};
size_t ALen = sizeof(A)/sizeof(A[0]);
srand((unsigned int)time(NULL));
// inner boundary tests (should all answer true)
cout << inRange(5, 25, A, ALen) << endl;
cout << inRange(1800, 2000, A, ALen) << endl;
// limit tests (should all answer true)
cout << inRange(0, 5, A, ALen) << endl;
cout << inRange(2000, 3000, A, ALen) << endl;
// midrange tests. (should all answer true)
cout << inRange(26, 31, A, ALen) << endl;
cout << inRange(99, 201, A, ALen) << endl;
cout << inRange(6, 10, A, ALen) << endl;
cout << inRange(501, 1500, A, ALen) << endl;
// identity tests. (should all answer true)
cout << inRange(5, 5, A, ALen) << endl;
cout << inRange(25, 25, A, ALen) << endl;
cout << inRange(100, 100, A, ALen) << endl;
cout << inRange(1000, 1000, A, ALen) << endl;
// test single-element top-and-bottom cases
cout << inRange(0,5,A,1) << endl;
cout << inRange(5,5,A,1) << endl;
// oo-range tests (should all answer false)
cout << inRange(1, 4, A, ALen) << endl;
cout << inRange(2001, 2500, A, ALen) << endl;
cout << inRange(1, 1, A, 0) << endl;
// performance on LARGE arrays.
const size_t N = 2000000;
cout << "Building array of " << N << " random values." << endl;
std::vector<int> bigv;
generate_n(back_inserter(bigv), N, rand);
// sort the array
cout << "Sorting array of " << N << " random values." << endl;
std::sort(bigv.begin(), bigv.end());
cout << "Running " << N << " identity searches..." << endl;
for (int i=1;i<N; i++)
if (!inRange(bigv[i-1],bigv[i],&bigv[0],N))
{
cout << "Error: could not find value in range [" << bigv[i-1] << ',' << bigv[i] << "]" << endl;
break;
};
cout << "Finished" << endl;
return 0;
}
出力結果:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
Sorting array of 2000000 random values.
Running 2000000 identity searches...
Finished