これがC++の実装です。希望は役に立ちます(ダイクストラ、クラスカルなどのいくつかのアルゴリズムが含まれており、ソートには深さ優先探索などが使用されます)。
Graph.h
#ifndef __GRAPH_H
#define __GRAPH_H
#include <vector>
#include <stack>
#include <set>
typedef struct __edge_t
{
int v0, v1, w;
__edge_t():v0(-1),v1(-1),w(-1){}
__edge_t(int from, int to, int weight):v0(from),v1(to),w(weight){}
} edge_t;
class Graph
{
public:
Graph(void); // construct a graph with no vertex (and thus no edge)
Graph(int n); // construct a graph with n-vertex, but no edge
Graph(const Graph &graph); // deep copy of a graph, avoid if not necessary
public:
// @destructor
virtual ~Graph(void);
public:
inline int getVertexCount(void) const { return this->numV; }
inline int getEdgeCount(void) const { return this->numE; }
public:
// add an edge
// @param: from [in] - starting point of the edge
// @param: to [in] - finishing point of the edge
// @param: weight[in] - edge weight, only allow positive values
void addEdge(int from, int to, int weight=1);
// get all edges
// @param: edgeList[out] - an array with sufficient size to store the edges
void getAllEdges(edge_t edgeList[]);
public:
// topological sort
// @param: vertexList[out] - vertex order
void sort(int vertexList[]);
// dijkstra's shortest path algorithm
// @param: v[in] - starting vertex
// @param: path[out] - an array of <distance, prev> pair for each vertex
void dijkstra(int v, std::pair<int, int> path[]);
// kruskal's minimum spanning tree algorithm
// @param: graph[out] - the minimum spanning tree result
void kruskal(Graph &graph);
// floyd-warshall shortest distance algorithm
// @param: path[out] - a matrix of <distance, next> pair in C-style
void floydWarshall(std::pair<int, int> path[]);
private:
// resursive depth first search
void sort(int v, std::pair<int, int> timestamp[], std::stack<int> &order);
// find which set the vertex is in, used in kruskal
std::set<int>* findSet(int v, std::set<int> vertexSet[], int n);
// union two sets, used in kruskal
void setUnion(std::set<int>* s0, std::set<int>* s1);
// initialize this graph
void init(int n);
// initialize this graph by copying another
void init(const Graph &graph);
private:
int numV, numE; // number of vertices and edges
std::vector< std::pair<int, int> >* adjList; // adjacency list
};
#endif
Graph.cpp
#include "Graph.h"
#include <algorithm>
#include <map>
Graph::Graph()
:numV(0), numE(0), adjList(0)
{
}
Graph::Graph(int n)
:numV(0), numE(0), adjList(0)
{
this->init(n);
}
Graph::Graph(const Graph &graph)
:numV(0), numE(0), adjList(0)
{
this->init(graph);
}
Graph::~Graph()
{
delete[] this->adjList;
}
void Graph::init(int n)
{
if(this->adjList){
delete[] this->adjList;
}
this->numV = n;
this->numE = 0;
this->adjList = new std::vector< std::pair<int, int> >[n];
}
void Graph::init(const Graph &graph)
{
this->init(graph.numV);
for(int i = 0; i < numV; i++){
this->adjList[i] = graph.adjList[i];
}
}
void Graph::addEdge(int from, int to, int weight)
{
if(weight > 0){
this->adjList[from].push_back( std::make_pair(to, weight) );
this->numE++;
}
}
void Graph::getAllEdges(edge_t edgeList[])
{
int k = 0;
for(int i = 0; i < numV; i++){
for(int j = 0; j < this->adjList[i].size(); j++){
// add this edge to edgeList
edgeList[k++] = edge_t(i, this->adjList[i][j].first, this->adjList[i][j].second);
}
}
}
void Graph::sort(int vertexList[])
{
std::pair<int, int>* timestamp = new std::pair<int, int>[this->numV];
std::stack<int> order;
for(int i = 0; i < this->numV; i++){
timestamp[i].first = -1;
timestamp[i].second = -1;
}
for(int v = 0; v < this->numV; v++){
if(timestamp[v].first < 0){
this->sort(v, timestamp, order);
}
}
int i = 0;
while(!order.empty()){
vertexList[i++] = order.top();
order.pop();
}
delete[] timestamp;
return;
}
void Graph::sort(int v, std::pair<int, int> timestamp[], std::stack<int> &order)
{
// discover vertex v
timestamp[v].first = 1;
for(int i = 0; i < this->adjList[v].size(); i++){
int next = this->adjList[v][i].first;
if(timestamp[next].first < 0){
this->sort(next, timestamp, order);
}
}
// finish vertex v
timestamp[v].second = 1;
order.push(v);
return;
}
void Graph::dijkstra(int v, std::pair<int, int> path[])
{
int* q = new int[numV];
int numQ = numV;
for(int i = 0; i < this->numV; i++){
path[i].first = -1; // infinity distance
path[i].second = -1; // no path exists
q[i] = i;
}
// instant reachable to itself
path[v].first = 0;
path[v].second = -1;
while(numQ > 0){
int u = -1; // such node not exists
for(int i = 0; i < numV; i++){
if(q[i] >= 0
&& path[i].first >= 0
&& (u < 0 || path[i].first < path[u].first)){ //
u = i;
}
}
if(u == -1){
// all remaining nodes are unreachible
break;
}
// remove u from Q
q[u] = -1;
numQ--;
for(int i = 0; i < this->adjList[u].size(); i++){
std::pair<int, int>& edge = this->adjList[u][i];
int alt = path[u].first + edge.second;
if(path[edge.first].first < 0 || alt < path[ edge.first ].first){
path[ edge.first ].first = alt;
path[ edge.first ].second = u;
}
}
}
delete[] q;
return;
}
// compare two edges by their weight
bool edgeCmp(edge_t e0, edge_t e1)
{
return e0.w < e1.w;
}
std::set<int>* Graph::findSet(int v, std::set<int> vertexSet[], int n)
{
for(int i = 0; i < n; i++){
if(vertexSet[i].find(v) != vertexSet[i].end()){
return vertexSet+i;
}
}
return 0;
}
void Graph::setUnion(std::set<int>* s0, std::set<int>* s1)
{
if(s1->size() > s0->size()){
std::set<int>* temp = s0;
s0 = s1;
s1 = temp;
}
for(std::set<int>::iterator i = s1->begin(); i != s1->end(); i++){
s0->insert(*i);
}
s1->clear();
return;
}
void Graph::kruskal(Graph &graph)
{
std::vector<edge_t> edgeList;
edgeList.reserve(numE);
for(int i = 0; i < numV; i++){
for(int j = 0; j < this->adjList[i].size(); j++){
// add this edge to edgeList
edgeList.push_back( edge_t(i, this->adjList[i][j].first, this->adjList[i][j].second) );
}
}
// sort the list in ascending order
std::sort(edgeList.begin(), edgeList.end(), edgeCmp);
graph.init(numV);
// create disjoint set of the spanning tree constructed so far
std::set<int>* disjoint = new std::set<int>[this->numV];
for(int i = 0; i < numV; i++){
disjoint[i].insert(i);
}
for(int e = 0; e < edgeList.size(); e++){
// consider edgeList[e]
std::set<int>* s0 = this->findSet(edgeList[e].v0, disjoint, numV);
std::set<int>* s1 = this->findSet(edgeList[e].v1, disjoint, numV);
if(s0 == s1){
// adding this edge will make a cycle
continue;
}
// add this edge to MST
graph.addEdge(edgeList[e].v0, edgeList[e].v1, edgeList[e].w);
// union s0 & s1
this->setUnion(s0, s1);
}
delete[] disjoint;
return;
}
#define IDX(i,j) ((i)*numV+(j))
void Graph::floydWarshall(std::pair<int, int> path[])
{
// initialize
for(int i = 0; i < numV; i++){
for(int j = 0; j < numV; j++){
path[IDX(i,j)].first = -1;
path[IDX(i,j)].second = -1;
}
}
for(int i = 0; i < numV; i++){
for(int j = 0; j < this->adjList[i].size(); j++){
path[IDX(i,this->adjList[i][j].first)].first
= this->adjList[i][j].second;
path[IDX(i,this->adjList[i][j].first)].second
= this->adjList[i][j].first;
}
}
// dynamic programming
for(int k = 0; k < numV; k++){
for(int i = 0; i < numV; i++){
for(int j = 0; j < numV; j++){
if(path[IDX(i,k)].first == -1
|| path[IDX(k,j)].first == -1){
// no path exist from i-to-k or from k-to-j
continue;
}
if(path[IDX(i,j)].first == -1
|| path[IDX(i,j)].first > path[IDX(i,k)].first + path[IDX(k,j)].first){
// there is a shorter path from i-to-k, and from k-to-j
path[IDX(i,j)].first = path[IDX(i,k)].first + path[IDX(k,j)].first;
path[IDX(i,j)].second = k;
}
}
}
}
return;
}