重複の可能性:
2 つの線分が交差する場所をどのように検出しますか?
2 つの線分が交差しているかどうかを判断していますか?
l1=((A0, B0), (A1, B1)) と l2=((A2, B2), (A3, B3)) の 2 行が与えられます。Ax、Bx は整数で、(Ax、Bx) は線の始点と終点を指定します。
l1 と l2 が交差するかどうかを判断する整数演算のみを使用するアルゴリズムはありますか? (ブール値の回答のみが必要です。)
私自身のアプローチは、固定小数点演算との交点近くの点を計算することでした。次に、解 (a, b) を次の式に代入しました。
I: abs((A0 + a * (A1-A0)) - (A2 + b * (A3-A2))) < 公差
II: abs((B0 + a * (B1-B0)) - (B2 + b * (B3-B2))) < 公差
I と II の両方が true と評価された場合、私のメソッドは true を返す必要があります。
私の C++ コード:
vec.h :
#ifndef __MY_VECTOR__
#define __MY_VECTOR__
#include <stdarg.h>
template<typename VType, unsigned int dim>
class vec {
private:
VType data[dim];
public:
vec(){}
vec(VType v0, ...){
data[0] = v0;
va_list l;
va_start(l, v0);
for(unsigned int i=1; i<dim; ++i){
data[i] = va_arg(l, VType);
}
va_end(l);
}
~vec(){}
VType& operator[](unsigned int i){
return data[i];
}
VType operator[](unsigned int i) const {
return data[i];
}};
template<typename VType, unsigned int dim, bool doDiv>
vec<VType, dim> helpArith1(const vec<VType, dim>& A, long delta){
vec<VType, dim> r(A);
for(unsigned int i=0; i<dim; ++i){
r[i] = doDiv ? (r[i] / delta) : (r[i] * delta);
}
return r;
}
template<typename VType, unsigned int dim>
vec<VType, dim> operator*(const vec<VType, dim>& v, long delta) {
return helpArith1<VType, dim, false>(A, delta);
}
template<typename VType, unsigned int dim>
vec<VType, dim> operator*(long delta, const vec<VType, dim>& v){
return v * delta;
}
template<typename VType,unsigned int dim>
vec<VType, dim> operator/(const vec<VType, dim>& A, long delta) {
return helpArith1<VType, dim, true>(A, delta);
}
template<typename VType, unsigned int dim, bool doSub>
vec<VType, dim> helpArith2(const vec<VType, dim>& A, const vec<VType, dim>& B){
vec<VType, dim> r;
for(unsigned int i=0; i<dim; ++i){
r[i] = doSub ? (A[i]-B[i]):(A[i]+B[i]);
}
return r;
}
template<typename VType, unsigned int dim>
vec<VType, dim> operator+(const vec<VType, dim>& A, const vec<VType, dim>& B){
return helpArith2<VType, dim, false>(A, B);
}
template<typename VType, unsigned int dim>
vec<VType, dim> operator-(const vec<VType, dim>& A, const vec<VType, dim>& B){
return helpArith2<VType, dim, true>(A, B);
}
template<typename VType, unsigned int dim>
bool operator==(const vec<VType, dim>& A, const vec<VType, dim>& B) {
for(unsigned int i==0; i<dim; ++i){
if(A[i]!=B[i]){
return false;
}
}
return true;
}
template<typename VType, unsigned int dim>
bool operator!=(const vec<VType, dim>& A, const vec<VType, dim>& B) {
return !(A==B);
}
#endif
line.h :
#ifndef __MY_LINE__
#define __MY_LINE__
#include "vec.h"
unsigned long int ggt(unsigned long int A, unsigned long int B) {
if(A==0) {
if(B==0) {
return 1;
}
return B;
}
while(B!=0) {
unsigned long int temp = A % B;
A = B;
B = temp;
}
return A;
}
#define ABS(n) ( ((n)<0) ? (-n) : (n) )
struct line {
vec<long int, 2> A, B;
explicit line(long int iA_0, long int iA_1, long int iB_0, long int iB_1) :
A(vec<long int, 2>(iA_0<<8, iA_1<<8)),
B(vec<long int, 2>(iB_0<<8, iB_1<<8)){}
vec<long int, 2> slope() const{
vec<long int, 2> temp = A-B;
if(temp[0]<0) {
temp[0] = -1 * temp[0];
temp[1] = -1 * temp[1];
}
return temp/ggt(ABS(temp[0]), ABS(temp[1]));
}
};
bool intersect(line l1, line l2) {
const long int epsilon = 1<<4;
vec<long int, 2> sl1 = l1.slope(), sl2 = l2.slope();
// l2.A + b*sl2 = l1.A + a*sl1
// <=> l2.A - l1.A = a*sl1 - b*sl2 // = (I, II)^T
// I': sl2[1] * I; II': sl2[0] * II
vec<long int, 2> L = l2.A - l1.A, R = sl1;
L[0] = L[0] * sl2[1]; R[0] = R[0] * sl2[1];
L[1] = L[1] * sl2[0]; R[1] = R[1] * sl2[0];
// I' - II'
long int L_SUB = L[0] - L[1], R_SUB = R[0] - R[1];
if(ABS(R_SUB) == 0) {
return ABS(L_SUB) == 0;
}
long int temp = ggt(ABS(L_SUB), ABS(R_SUB));
L_SUB /= temp; R_SUB /= temp;
// R_SUB * a = L_SUB
long int a = L_SUB/R_SUB, b = ((l1.A[0] - l2.A[0])*R_SUB + L_SUB * sl1[0])/R_SUB;
// if the given lines intersect, then {a, b} must be the solution of
// l2.A - l1.A = a*sl1 - b*sl2
L = l2.A - l1.A;
long x = ABS((L[0]- (a*sl1[0]-b*sl2[0]))), y = ABS((L[1]- (a*sl1[1]-b*sl2[1])));
return x<epsilon && y < epsilon;
}
#endif
main.cpp :
#include "line.h"
int main(){
line A(0, 0, 6, 0), B(3, 3, 4, -3);
bool temp = intersect(A, B);
return 0;
}
(交差関数がすべての行で機能するかどうかはわかりませんが、これまでに使用したテスト データでは正しい結果が返されました。)