パラメータ x があり、x を使用して y を計算する行がいくつかあり、x の値が 10 個あり、各値を使用してそれぞれの y を計算する必要があり、毎回 x を変更してコマンドを実行したくないとします。 y の 10 個の値すべてを計算するために 1 回だけ実行する必要があるように、既に記述したコマンド ラインを繰り返すことができる構文が F# にあるのでしょうか?
前もって感謝します
編集:コードを下に貼り付けました。基本的に、さまざまなパラメーターの組み合わせのアルファを取得したいのですが、パラメーターは「shreshold」、「WeeksBfReport」、および「DaysBfExecution」です。パラメータの組み合わせは 30 セットあるので、パラメータを変更してコマンドを 30 回実行する必要はありません。これを行わない方法はありますか?
let shreshold= 2.0
let ReportDate = "2008/12/15"
let ExeDate = "2009/01/05"
let WeeksBfReport = 1
let DaysBfExecution = 3
let Rf=0.01
let DateIn=ReportDate.ToDateTimeExact("yyyy/MM/dd").AddWeeks(-WeeksBfReport)
let DateOut=ExeDate.ToDateTimeExact("yyyy/MM/dd").AddWorkDays(-DaysBfExecution)
let DateInString=DateIn.ToString("yyyy/MM/dd")
let DateOutString=DateOut.ToString("yyyy/MM/dd")
let mutable FundMV=0.
let FundTicker=csvTable.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Ticker")).ToArray()
for i in 0..csvTable.Rows.Count-1 do
let FundUnitPrice= float(csvTable.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = FundTicker.[i]).First().Field<string>(DateInString))
let FundShares= float(csvTable1.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = FundTicker.[i]).First().Field<string>(DateInString))
FundMV<-FundMV + FundUnitPrice*FundShares
printfn "%e" FundMV
//use TMV to calculate weights of CSI300 constitutes
let mutable csiTMV=0.
let CSITMV : float array = Array.zeroCreate 300
let DictionaryCSI = Dictionary<String,float>()
for i in 0..299 do
let TMV=float(csvTable3.Rows.[i].Field<string>(DateInString))
csiTMV<-csiTMV + TMV
CSITMV.[i] <- TMV
for i in 0..299 do
let Weight=CSITMV.[i]/csiTMV
DictionaryCSI.[csvTable3.Rows.[i].Field<string>("Stock")]<-Weight
let DictionaryOldOut = Dictionary<String,float>()
let array=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Stock")).ToArray()
let OldOutTMV=ResizeArray<float>()
let DictionaryOldOutWeight = Dictionary<string,float>()
let OldOutWeight : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let Weight=DictionaryCSI.Item(array.[i+(csvTable2.Rows.Count/2)])
DictionaryOldOutWeight.[csvTable2.Rows.[i+csvTable2.Rows.Count/2].Field<string>("Stock")]<-Weight
OldOutWeight.[i]<- Weight
DictionaryOldOut.[csvTable2.Rows.[i+csvTable2.Rows.Count/2].Field<string>("Stock")]<- Weight*FundMV //OldOut Moving Value
OldOutTMV.Add(Weight)
let OldOutTMVarray=OldOutTMV.ToArray() //create an array of OldOut weights and then sum up
let SumOldOutTMV=Array.fold (+) 0. OldOutTMVarray
let mutable NewInTMV=0.
let NewInWeight : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
let DictionaryNewIn = Dictionary<string,float>()
let DictionaryNewInWeight = Dictionary<string,float>()
for i in 0..csvTable3.Rows.Count-300-1 do
let TMV=float(csvTable3.Rows.[i+300].Field<string>(DateInString))
NewInTMV<-NewInTMV + TMV
let Weight=TMV/(csiTMV+NewInTMV-SumOldOutTMV)
NewInWeight.[i]<-Weight
DictionaryNewInWeight.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-Weight
let MovingValue=Weight*FundMV
DictionaryNewIn.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-MovingValue //NewIn Moving Value
let table2array=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Stock")).ToArray()
let NewInturnoverArray : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let lastday= float(csvTable2.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = table2array.[i]).First().Field<string>(DateInString))
let turnover = csvTable2.Rows.[i].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))|>Seq.toArray
let lastdayindex : (int) =
if lastday= 0. then
let lastdayfake=float(csvTable2.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = table2array.[i+2]).First().Field<string>(DateInString))
let turnoverfake = csvTable2.Rows.[i+2].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))|>Seq.toArray
Array.findIndex(fun elem -> elem=lastdayfake) turnoverfake
else
let lastdayfake=lastday
let turnoverfake=turnover
Array.findIndex(fun elem -> elem=lastdayfake) turnoverfake
printfn "%A" lastdayindex
let TurnoverNeed : float array = Array.zeroCreate 21
for t in 0..20 do
TurnoverNeed.[t] <- turnover.[lastdayindex - 20 + t]
let zerotwo : float array = Array.zeroCreate TurnoverNeed.Length
if TurnoverNeed=zerotwo then
let ave_daily_turnover = 0.
NewInturnoverArray.[i] <- ave_daily_turnover
else
let ave_daily_turnover = Seq.average(TurnoverNeed|>Seq.filter(fun x-> x > 0.))
NewInturnoverArray.[i] <- ave_daily_turnover
type totalinfo = {Name:String;Shock:float}
let NewIn=ResizeArray<totalinfo>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
let MovingValue=DictionaryNewIn.Item(array.[i])
let Shock=MovingValue/NewInturnoverArray.[i]
let V= {Name=string(array.[i]); Shock=Shock}
NewIn.Add(V)
let NewInShock=NewIn.ToArray()
let OldOutturnoverArray : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let turnover = csvTable2.Rows.[i+csvTable2.Rows.Count/2].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))
let zero : float array = Array.zeroCreate (turnover|>Seq.toArray).Length
if turnover|>Seq.toArray=zero then
let ave_daily_turnover = 0.
OldOutturnoverArray.[i] <- ave_daily_turnover
else
let ave_daily_turnover = Seq.average(turnover|>Seq.filter(fun x-> x > 0.))
OldOutturnoverArray.[i] <- ave_daily_turnover
let OldOut=ResizeArray<totalinfo>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
let MovingValue=DictionaryOldOut.Item(array.[i+csvTable2.Rows.Count/2])
let Shock=MovingValue/OldOutturnoverArray.[i]
let V= {Name=string(array.[i+csvTable2.Rows.Count/2]); Shock=Shock}
OldOut.Add(V)
let OldOutShock=OldOut.ToArray()
let DoIn=NewInShock |> Array.filter (fun t -> t.Shock >= shreshold)
let DoOut=OldOutShock |> Array.filter (fun t -> t.Shock >= shreshold)
let DoInTicker= Array.map (fun e -> e.Name) DoIn
let DoOutTicker= Array.map (fun e -> e.Name) DoOut
let DoInWeight : float array = Array.zeroCreate DoInTicker.Length
for i in 0..DoInTicker.Length-1 do
DoInWeight.[i] <- DictionaryNewInWeight.Item(DoInTicker.[i])
let TotalDoInWeight= Array.fold (+) 0. DoInWeight
let DoInRatioX : float array = Array.zeroCreate DoInTicker.Length
for i in 0..(DoInTicker.Length)-1 do
DoInRatioX.[i] <- DoInWeight.[i]/TotalDoInWeight
let Beta=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Beta")).ToArray()
//let NewInBeta : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
let DictionaryNewInBeta = Dictionary<string,float>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
// NewInBeta.[i] <- float(Beta.[i])
DictionaryNewInBeta.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-float(Beta.[i])
let DoInBeta : float array = Array.zeroCreate DoInTicker.Length
for i in 0..DoInTicker.Length-1 do
DoInBeta.[i] <- DictionaryNewInBeta.Item(DoInTicker.[i])
let mutable PortfolioBeta=0.
for i in 0..(DoInTicker.Length)-1 do
PortfolioBeta <- PortfolioBeta + DoInRatioX.[i] * DoInBeta.[i]
let mutable PortfolioReturn= 0.
for i in 0..DoInTicker.Length-1 do
let PriceIn= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = DoInTicker.[i]).First().Field<string>(DateInString))
let PriceOut= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = DoInTicker.[i]).First().Field<string>(DateOutString))
PortfolioReturn <- PortfolioReturn + (1./float(DoInTicker.Length))*(PriceOut - PriceIn)/PriceIn
let IndexIn= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = "000300.SH").First().Field<string>(DateInString))
let IndexOut= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = "000300.SH").First().Field<string>(DateOutString))
let MarketReturn= (IndexOut-IndexIn)/IndexIn
let Alpha= PortfolioReturn-Rf-PortfolioBeta*(MarketReturn-Rf)