2つのモデルをF比検定で比較するRの関数を使用する必要があるように、スクリプトを(pythonで、pypeRのR部分を使用して)作成しています。
モデルは次のようになります。
モデル1: Response ~ Predictor A + Predictor B + Predictor C.... + Predictor n
モデル2: Response ~ Predictor 1
一緒に予測子A+B+...n
が構成されてPredictor 1
いるので、ここでネストしても問題はありません(私を信じてください)。
Predictor A + Predictor B + Predictor C.... + Predictor n
作成した関数に渡すと、1つの変数として扱われていると思います(自由度はと同じであるためModel 2
)。おそらくこれは私が使用しているためですpaste()
か?とにかく、モデル1の予測子の実際の数は実行ごとに変化するため(関数として必要な理由です)、を使用する以外にこれに対応する方法がわかりませんpaste()
。
ここでは、ペーストが実際には問題にならない可能性があることに注意してください。問題があるのではないかと人々に知らせたかっただけです。
真の残差逸脱度と自由度を取得する方法についての提案はありますmodel 1
か?それはハックである可能性があります。たとえばlength(vector of predictors) - 1
、自由度を取得するために単純に減算していました。残差逸脱に対する同様のハックがどのようなものになるかはわかりません。
関数とインスタンス化の例を次に示します。
make_and_compare_models <- function(fitness_trait_name, data_frame_name, vector_for_multiple_regression, predictor_for_single_regression, fam){
fit1<-glm(formula=as.formula(paste(fitness_trait_name,"~", paste(vector_for_multiple_regression, sep="+"))), family=fam, data=data_frame_name)
#print ('length of vector of predictors')
additional.degrees.of.freedom.fit1<-length(vector_for_multiple_regression)-1 ##the paste above prevents R from recognizing all of the vectors as separate predictors. This -1 gives you the difference in parameter number between the two models.
print ("summary fit 1")
print(summary(fit1))
dev1<-(fit1$deviance)
print ('residual deviance of fit1')
print (dev1)
print(fit1$df.residual)
##this is how I'd correct for degrees of freedom
#df1=fit1$df.residual-additional.degrees.of.freedom.fit1
#fit1$df.residual=df1
##if the old way
df1=fit1$df.residual
print(fit1$df.residual)
print ('df1')
print (df1)
fit2<- glm(data=data_frame_name, formula=as.formula(paste(fitness_trait_name,"~",predictor_for_single_regression)), family=fam)
print("summary fit 2")
print(summary(fit2))
print ("deviance of fit2")
dev2<-(fit2$deviance)
print(dev2)
df2=fit2$df.residual
print ('df2')
print (df2)
F.ratio<-((dev2-dev1)/(df2-df1))/(dev1/df1)
print('F.ratio')
print(F.ratio)
new.p<-1-pf(F.ratio,abs(df1-df2),max(df2,df1))
print('new.p')
print(new.p)
}
data <- structure(list(ID = c(1L, 2L, 4L, 7L, 9L, 10L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 20L, 21L, 22L, 23L, 24L, 25L, 27L, 28L, 29L,
31L, 34L, 37L, 38L, 39L, 40L, 41L, 43L, 44L, 45L, 46L, 47L, 48L,
49L, 52L, 55L, 56L, 59L, 60L, 61L, 62L, 63L, 65L, 66L, 67L, 68L,
69L, 71L), QnWeight_initial = c(158L, 165L, 137L, 150L, 153L,
137L, 158L, 163L, 159L, 151L, 145L, 144L, 157L, 144L, 133L, 148L,
151L, 151L, 147L, 158L, 178L, 164L, 134L, 151L, 148L, 142L, 127L,
179L, 162L, 150L, 151L, 153L, 163L, 155L, 163L, 170L, 149L, 165L,
128L, 134L, 145L, 147L, 148L, 160L, 131L, 155L, 169L, 143L, 123L,
151L), Survived_eclosion = c(0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L,
1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Days_wrkr_eclosion_minus20 = c(NA,
1L, NA, 3L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 1L, NA, 0L, 7L, 1L, 0L,
1L, 0L, 1L, 2L, 2L, NA, 2L, 3L, 2L, 2L, NA, 0L, 1L, NA, NA, 0L,
0L, 0L, 0L, 3L, 3L, 3L, 1L, 0L, 2L, NA, 1L, 0L, 1L, 1L, 3L, 1L,
2L), MLH = c(0.5, 0.666666667, 0.555555556, 0.25, 1, 0.5, 0.333333333,
0.7, 0.5, 0.7, 0.5, 0.666666667, 0.375, 0.4, 0.5, 0.333333333,
0.4, 0.375, 0.3, 0.5, 0.3, 0.2, 0.4, 0.875, 0.6, 0.4, 0.222222222,
0.222222222, 0.6, 0.6, 0.3, 0.4, 0.714285714, 0.4, 0.3, 0.6,
0.4, 0.7, 0.625, 0.555555556, 0.25, 0.5, 0.5, 0.6, 0.25, 0.428571429,
0.3, 0.25, 0.375, 0.555555556), Acon5 = c(0.35387674, 0.35387674,
0.35387674, 0.35387674, 0.35387674, 0.35387674, 0.35387674, 0,
0, 1, 0, 1, 0.35387674, 0, 0, 0.35387674, 1, 1, 0, 0, 0, 1, 0,
0.35387674, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0.35387674), Baez = c(1, 1, 1, 0.467836257,
1, 1, 0, 0, 1, 1, 0, 0.467836257, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0.467836257, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1), C294 = c(0, 1, 0, 0, 1,
0.582542694, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
0, 1, 1, 0, 0, 0.582542694, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1), C316 = c(1, 1, 0, 0, 0.519685039,
0.519685039, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0.519685039, 0,
1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0.519685039, 1, 0, 1,
1, 0, 0.519685039, 1, 0.519685039, 1, 1, 1, 0.519685039, 0.519685039,
0, 0.519685039, 0.519685039, 0), i_120_PigTail = c(1, 1, 0, 1,
0.631236443, 0.631236443, 1, 1, 1, 1, 1, 0, 0.631236443, 1, 1,
1, 0, 0.631236443, 1, 1, 1, 0, 0, 1, 1, 1, 0.631236443, 0, 1,
1, 0, 1, 0.631236443, 1, 0, 1, 0, 0, 1, 0.631236443, 0.631236443,
0, 1, 0, 0.631236443, 0.631236443, 1, 0.631236443, 0.631236443,
1), i129 = c(0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L), Jackstraw_PigTail = c(0L, 1L, 1L, 0L,
1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L,
0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Neil_Young = c(0.529636711,
0, 1, 0, 0.529636711, 0.529636711, 1, 1, 0, 1, 1, 1, 0, 0, 1,
1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0,
1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1), Ramble = c(0, 0, 0,
0, 0.215163934, 0.215163934, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.215163934, 0,
0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0.215163934, 0, 0, 0, 0), Sol_18 = c(1,
0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0.404669261,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)), .Names = c("ID", "QnWeight_initial",
"Survived_eclosion", "Days_wrkr_eclosion_minus20", "MLH", "Acon5",
"Baez", "C294", "C316", "i_120_PigTail", "i129", "Jackstraw_PigTail",
"Neil_Young", "Ramble", "Sol_18"), class = "data.frame", row.names = c(NA,
-50L))
make_and_compare_models("QnWeight_initial", data, c("Acon5","Baez","C294","C316","i_120_PigTail","i129","Jackstraw_PigTail","Neil_Young","Ramble","Sol_18"), "MLH", "gaussian")