16

日次の ohlc にダウンサンプリングしたい、複数日にわたる日内の一連のログ リターンがあります。私は次のようなことができます

hi = series.resample('B', how=lambda x: np.max(np.cumsum()))
low = series.resample('B', how=lambda x: np.min(np.cumsum())) 

しかし、呼び出しごとに cumsum を計算するのは効率が悪いようです。最初に累積を計算してから、データに「ohcl」を適用する方法はありますか?

1999-08-09 12:30:00-04:00   -0.000486
1999-08-09 12:31:00-04:00   -0.000606
1999-08-09 12:32:00-04:00   -0.000120
1999-08-09 12:33:00-04:00   -0.000037
1999-08-09 12:34:00-04:00   -0.000337
1999-08-09 12:35:00-04:00    0.000100
1999-08-09 12:36:00-04:00    0.000219
1999-08-09 12:37:00-04:00    0.000285
1999-08-09 12:38:00-04:00   -0.000981
1999-08-09 12:39:00-04:00   -0.000487
1999-08-09 12:40:00-04:00    0.000476
1999-08-09 12:41:00-04:00    0.000362
1999-08-09 12:42:00-04:00   -0.000038
1999-08-09 12:43:00-04:00   -0.000310
1999-08-09 12:44:00-04:00   -0.000337
...
1999-09-28 06:45:00-04:00    0.000000
1999-09-28 06:46:00-04:00    0.000000
1999-09-28 06:47:00-04:00    0.000000
1999-09-28 06:48:00-04:00    0.000102
1999-09-28 06:49:00-04:00   -0.000068
1999-09-28 06:50:00-04:00    0.000136
1999-09-28 06:51:00-04:00    0.000566
1999-09-28 06:52:00-04:00    0.000469
1999-09-28 06:53:00-04:00    0.000000
1999-09-28 06:54:00-04:00    0.000000
1999-09-28 06:55:00-04:00    0.000000
1999-09-28 06:56:00-04:00    0.000000
1999-09-28 06:57:00-04:00    0.000000
1999-09-28 06:58:00-04:00    0.000000
1999-09-28 06:59:00-04:00    0.000000
4

2 に答える 2

21
df.groupby([df.index.year, df.index.month, df.index.day]).transform(np.cumsum).resample('B', how='ohlc')

これは私が望むものかもしれないと思いますが、テストする必要があります。

編集: zelazny7 の応答後:

df.groupby(pd.TimeGrouper('D')).transform(np.cumsum).resample('D', how='ohlc')

動作し、以前のソリューションよりも効率的です。

更新

pd.TimeGrouper('D') はpandas v0.21.0以降非推奨です。

pd.Grouper()代わりに使用してください:

df.groupby(pd.Grouper(freq='D')).transform(np.cumsum).resample('D', how='ohlc')
于 2013-02-01T13:12:35.537 に答える
5

リサンプルの提案を機能させることができませんでした。運が良かったですか?営業日レベルでデータを集計し、1 回のパスで OHLC 統計を計算する方法を次に示します。

from io import BytesIO
from pandas import *

text = """1999-08-09 12:30:00-04:00   -0.000486
1999-08-09 12:31:00-04:00   -0.000606
1999-08-09 12:32:00-04:00   -0.000120
1999-08-09 12:33:00-04:00   -0.000037
1999-08-09 12:34:00-04:00   -0.000337
1999-08-09 12:35:00-04:00    0.000100
1999-08-09 12:36:00-04:00    0.000219
1999-08-09 12:37:00-04:00    0.000285
1999-08-09 12:38:00-04:00   -0.000981
1999-08-09 12:39:00-04:00   -0.000487
1999-08-09 12:40:00-04:00    0.000476
1999-08-09 12:41:00-04:00    0.000362
1999-08-09 12:42:00-04:00   -0.000038
1999-08-09 12:43:00-04:00   -0.000310
1999-08-09 12:44:00-04:00   -0.000337"""

df = read_csv(BytesIO(text), sep='\s+', parse_dates=[[0,1]], index_col=[0], header=None)

ここでは、辞書の辞書を作成します。外部キーは、関数を適用する列を参照します。内側のキーには集計関数の名前が含まれ、内側の値は適用する関数です。

f = {2: {'O':'first',
         'H':'max',
         'L':'min',
         'C':'last'}}

df.groupby(TimeGrouper(freq='B')).agg(f)

Out:
                   2
                   H         C         L         O
1999-08-09  0.000476 -0.000337 -0.000981 -0.000486
于 2013-02-01T14:14:16.703 に答える