32

データに対してランダム フォレストを実行し、出力を行列の形式で取得しました。分類に適用されたルールは何ですか?

PS 出力として顧客のプロファイルが必要です。たとえば、ニューヨーク出身の人、テクノロジー業界で働いている人などです。

ランダム フォレストの結果をどのように解釈できますか?

4

3 に答える 3

40

" inTrees " R パッケージが役に立つかもしれません。

ここに例があります。

ランダム フォレストから生のルールを抽出します。

library(inTrees)
library(randomForest) 
data(iris)
X <- iris[, 1:(ncol(iris) - 1)]  # X: predictors
target <- iris[,"Species"]  # target: class
rf <- randomForest(X, as.factor(target))
treeList <- RF2List(rf)  # transform rf object to an inTrees' format
exec <- extractRules(treeList, X)  # R-executable conditions
exec[1:2,]
#       condition                 
# [1,] "X[,1]<=5.45 & X[,4]<=0.8"
# [2,] "X[,1]<=5.45 & X[,4]>0.8"

ルールを測定します。lenは条件内の変数と値のペアの数、freqは条件を満たすデータのパーセンテージ、predはルールの結果、つまりcondition=>prederrルールのエラー率です。

ruleMetric <- getRuleMetric(exec,X,target)  # get rule metrics
ruleMetric[1:2,]
#      len  freq    err     condition                  pred        
# [1,] "2" "0.3"   "0"     "X[,1]<=5.45 & X[,4]<=0.8" "setosa"    
# [2,] "2" "0.047" "0.143" "X[,1]<=5.45 & X[,4]>0.8"  "versicolor"

各ルールを整理します。

ruleMetric <- pruneRule(ruleMetric, X, target)
ruleMetric[1:2,]
#      len  freq    err     condition                 pred        
# [1,] "1" "0.333" "0"     "X[,4]<=0.8"              "setosa"    
# [2,] "2" "0.047" "0.143" "X[,1]<=5.45 & X[,4]>0.8" "versicolor"

コンパクトなルール セットを選択:

(ruleMetric <- selectRuleRRF(ruleMetric, X, target))
#          len freq    err     condition                                             pred         impRRF              
# [1,] "1" "0.333" "0"     "X[,4]<=0.8"                                          "setosa"     "1"                 
# [2,] "3" "0.313" "0"     "X[,3]<=4.95 & X[,3]>2.6 & X[,4]<=1.65"               "versicolor" "0.806787615686919" 
# [3,] "4" "0.333" "0.04"  "X[,1]>4.95 & X[,3]<=5.35 & X[,4]>0.8 & X[,4]<=1.75"  "versicolor" "0.0746284932951366"
# [4,] "2" "0.287" "0.023" "X[,1]<=5.9 & X[,2]>3.05"                             "setosa"     "0.0355855756152103"
# [5,] "1" "0.307" "0.022" "X[,4]>1.75"                                          "virginica"  "0.0329176860493297"
# [6,] "4" "0.027" "0"     "X[,1]>5.45 & X[,3]<=5.45 & X[,4]<=1.75 & X[,4]>1.55" "versicolor" "0.0234818254947883"
# [7,] "3" "0.007" "0"     "X[,1]<=6.05 & X[,3]>5.05 & X[,4]<=1.7"               "versicolor" "0.0132907201116241"

分類子として順序付けられたルール リストを作成します。

(learner <- buildLearner(ruleMetric, X, target))
#      len freq                 err                  condition                                             pred        
# [1,] "1" "0.333333333333333"  "0"                  "X[,4]<=0.8"                                          "setosa"    
# [2,] "3" "0.313333333333333"  "0"                  "X[,3]<=4.95 & X[,3]>2.6 & X[,4]<=1.65"               "versicolor"
# [3,] "4" "0.0133333333333333" "0"                  "X[,1]>5.45 & X[,3]<=5.45 & X[,4]<=1.75 & X[,4]>1.55" "versicolor"
# [4,] "1" "0.34"               "0.0196078431372549" "X[,1]==X[,1]"                                        "virginica" 

ルールを読みやすくする:

readableRules <- presentRules(ruleMetric, colnames(X))
readableRules[1:2, ]
#      len  freq    err     condition                                                                       pred        
# [1,] "1" "0.333" "0"     "Petal.Width<=0.8"                                                              "setosa"    
# [2,] "3" "0.313" "0"     "Petal.Length<=4.95 & Petal.Length>2.6 & Petal.Width<=1.65"                     "versicolor"

変数の頻繁な相互作用を抽出します (ルールは枝刈りも選択もされていないことに注意してください)。

rf <- randomForest(X, as.factor(target))
treeList <- RF2List(rf)  # transform rf object to an inTrees' format
exec <- extractRules(treeList, X)  # R-executable conditions
ruleMetric <- getRuleMetric(exec, X, target)  # get rule metrics
freqPattern <- getFreqPattern(ruleMetric)
# interactions of at least two predictor variables
freqPattern[which(as.numeric(freqPattern[, "len"]) >= 2), ][1:4, ]
#      len sup     conf    condition                  pred        
# [1,] "2" "0.045" "0.587" "X[,3]>2.45 & X[,4]<=1.75" "versicolor"
# [2,] "2" "0.041" "0.63"  "X[,3]>4.75 & X[,4]>0.8"   "virginica" 
# [3,] "2" "0.039" "0.604" "X[,4]<=1.75 & X[,4]>0.8"  "versicolor"
# [4,] "2" "0.033" "0.675" "X[,4]<=1.65 & X[,4]>0.8"  "versicolor"

関数 presentRules を使用して、これらの頻繁なパターンを読み取り可能な形式で提示することもできます。

さらに、ルールや頻出パターンを LaTex でフォーマットできます。

library(xtable)
print(xtable(freqPatternSelect), include.rownames=FALSE)
# \begin{table}[ht]
# \centering
# \begin{tabular}{lllll}
#   \hline
#   len & sup & conf & condition & pred \\ 
#   \hline
#   2 & 0.045 & 0.587 & X[,3]$>$2.45 \& X[,4]$<$=1.75 & versicolor \\ 
#   2 & 0.041 & 0.63 & X[,3]$>$4.75 \& X[,4]$>$0.8 & virginica \\ 
#   2 & 0.039 & 0.604 & X[,4]$<$=1.75 \& X[,4]$>$0.8 & versicolor \\ 
#   2 & 0.033 & 0.675 & X[,4]$<$=1.65 \& X[,4]$>$0.8 & versicolor \\ 
#   \hline
# \end{tabular}
# \end{table}
于 2014-07-21T20:48:35.567 に答える
39

個々のツリーに適用されるルールを確認する

randomForestパッケージを使用すると仮定すると、これはフォレスト内のフィットしたツリーにアクセスする方法です。

library(randomForest)
data(iris)
rf <- randomForest(Species ~ ., iris)
getTree(rf, 1)

これは、500 のツリー #1 の出力を示しています。

   left daughter right daughter split var split point status prediction
1              2              3         3        2.50      1          0
2              0              0         0        0.00     -1          1
3              4              5         4        1.65      1          0
4              6              7         4        1.35      1          0
5              8              9         3        4.85      1          0
6              0              0         0        0.00     -1          2
...

ルート分割を説明する最初の行から読み始めます。ルート分割は、変数 3 に基づいていました。つまり、左の娘ノードに進む場合Petal.Length <= 2.50(行 2) Petal.Length > 2.50、右の娘ノードに進む場合 (行 3)。行 2 のように、行のステータスが である場合、-1葉に到達したことを意味し、この場合は class 1つまり setosaという予測を行います。

実際にはすべてマニュアルに書かれているので、詳細については?randomForest?getTreeを参照してください。

フォレスト全体の変数の重要度を調べる

とを見て?importanceください?varImpPlot。これにより、フォレスト全体で集計された変数ごとに 1 つのスコアが得られます。

> importance(rf)
             MeanDecreaseGini
Sepal.Length         10.03537
Sepal.Width           2.31812
Petal.Length         43.82057
Petal.Width          43.10046
于 2013-02-21T08:52:27.140 に答える