22

そのため、行列の行を合計しようとしていますが、その中に inf があります。inf を省略して行を合計するにはどうすればよいですか?

4

5 に答える 5

36

行列に の結果を掛けて、積を でis.finite(m)呼び出します。これは であるために機能します。rowSumsna.rm=TRUEInf*0NaN

m <- matrix(c(1:3,Inf,4,Inf,5:6),4,2)
rowSums(m*is.finite(m),na.rm=TRUE)
于 2013-03-13T18:26:54.063 に答える
21
A[is.infinite(A)]<-NA
rowSums(A,na.rm=TRUE)

比較のためのベンチマーク:

library(microbenchmark)


rowSumsMethod<-function(A){
 A[is.infinite(A)]<-NA
 rowSums(A,na.rm=TRUE)
}
applyMethod<-function(A){
 apply( A , 1 , function(x){ sum(x[!is.infinite(x)])})
}

rowSumsMethod2<-function(m){
  rowSums(m*is.finite(m),na.rm=TRUE) 
}

rowSumsMethod0<-function(A){
 A[is.infinite(A)]<-0
 rowSums(A)
}

A1 <- matrix(sample(c(1:5, Inf), 50, TRUE), ncol=5)
A2 <- matrix(sample(c(1:5, Inf), 5000, TRUE), ncol=5)
microbenchmark(rowSumsMethod(A1),rowSumsMethod(A2),
               rowSumsMethod0(A1),rowSumsMethod0(A2),
               rowSumsMethod2(A1),rowSumsMethod2(A2),
               applyMethod(A1),applyMethod(A2))

Unit: microseconds
               expr      min        lq    median        uq      max neval
  rowSumsMethod(A1)   13.063   14.9285   16.7950   19.3605 1198.450   100
  rowSumsMethod(A2)  212.726  220.8905  226.7220  240.7165  307.427   100
 rowSumsMethod0(A1)   11.663   13.9960   15.3950   18.1940  112.894   100
 rowSumsMethod0(A2)  103.098  109.6290  114.0610  122.9240  159.545   100
 rowSumsMethod2(A1)    8.864   11.6630   12.5960   14.6955   49.450   100
 rowSumsMethod2(A2)   57.380   60.1790   63.4450   67.4100   81.172   100
    applyMethod(A1)   78.839   84.4380   92.1355   99.8330  181.005   100
    applyMethod(A2) 3996.543 4221.8645 4338.0235 4552.3825 6124.735   100

したがって、ジョシュアの方法が勝ちます! また、apply メソッドは、他の 2 つのメソッドよりも明らかに遅いです (もちろん比較的言えば)。

于 2013-03-13T18:15:10.730 に答える
11

@Hemmoの回答のように値を置き換えることを避けるために、applyandを使用します。is.infiniteInfNA

> set.seed(1)
> Mat <- matrix(sample(c(1:5, Inf), 50, TRUE), ncol=5)
> Mat # this is an example
      [,1] [,2] [,3] [,4] [,5]
 [1,]    2    2  Inf    3    5
 [2,]    3    2    2    4    4
 [3,]    4    5    4    3    5
 [4,]  Inf    3    1    2    4
 [5,]    2    5    2    5    4
 [6,]  Inf    3    3    5    5
 [7,]  Inf    5    1    5    1
 [8,]    4  Inf    3    1    3
 [9,]    4    3  Inf    5    5
[10,]    1    5    3    3    5
> apply(Mat, 1, function(x) sum(x[!is.infinite(x)]))
 [1] 12 15 21 10 18 16 12 11 17 17
于 2013-03-13T18:22:46.727 に答える
8

これを試して...

m <- c( 1 ,2 , 3 , Inf , 4 , Inf ,5 )
sum(m[!is.infinite(m)])

または

m <- matrix( sample( c(1:10 , Inf) , 100 , rep = TRUE ) , nrow = 10 )
sums <- apply( m , 1 , FUN = function(x){ sum(x[!is.infinite(x)])})

> m
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    9    7  Inf    9    2    2    6    1   Inf
 [2,]    8    7    4    5    9    5    8    4    7    10
 [3,]    7    9    3    4    7    3    3    6    9     4
 [4,]    7  Inf    2    6    4    8    3    1    9     9
 [5,]    4  Inf    7    5    9    5    3    5    9     9
 [6,]    7    3    7  Inf    7    3    7    3    7     1
 [7,]    5    7    2    1  Inf    1    9    8    1     5
 [8,]    4  Inf   10  Inf    8   10    4    9    7     2
 [9,]   10    7    9    7    2  Inf    4  Inf    4     6
[10,]    9    4    6    3    9    6    6    5    1     8

> sums
 [1] 44 67 55 49 56 45 39 54 49 57
于 2013-03-13T18:14:51.180 に答える
3

これは「非適用」で非破壊的なアプローチです。

rowSums( matrix(match(A, A[is.finite(A)]), nrow(A)), na.rm=TRUE)
[1] 2 4

これはかなり効率的ですが、Johsua の乗算法ほど高速ではありません。

于 2013-03-13T18:48:10.597 に答える