次のようなPythonのタプルのリストであるデータセットがあります。
dataSet = [(6.1248199999999997, 27), (6.4400500000000003, 4), (5.9150600000000004, 1), (5.5388400000000004, 38), (5.82559, 1), (7.6892199999999997, 2), (6.9047799999999997, 1), (6.3516300000000001, 76), (6.5168699999999999, 1), (7.4382099999999998, 1), (5.4493299999999998, 1), (5.6254099999999996, 1), (6.3227700000000002, 1), (5.3321899999999998, 11), (6.7402300000000004, 4), (7.6701499999999996, 1), (5.4589400000000001, 3), (6.3089700000000004, 1), (6.5926099999999996, 2), (6.0003000000000002, 5), (5.9845800000000002, 1), (6.4967499999999996, 2), (6.51227, 6), (7.0302600000000002, 1), (5.7271200000000002, 49), (7.5311300000000001, 7), (5.9495800000000001, 2), (5.1487299999999996, 18), (5.7637099999999997, 6), (5.5144500000000001, 44), (6.7988499999999998, 1), (5.2578399999999998, 1)]
タプルの最初の要素がエネルギーで、2 番目の要素がカウンターである場合、影響を受けるセンサーの数。
ヒストグラムを作成して、影響を受けるセンサーの数とエネルギーの関係を調査したいと考えています。私はmatplotlib(およびpython)にかなり慣れていませんが、これまでに行ったことは次のとおりです。
import math
import matplotlib.pyplot as plt
dataSet = [(6.1248199999999997, 27), (6.4400500000000003, 4), (5.9150600000000004, 1), (5.5388400000000004, 38), (5.82559, 1), (7.6892199999999997, 2), (6.9047799999999997, 1), (6.3516300000000001, 76), (6.5168699999999999, 1), (7.4382099999999998, 1), (5.4493299999999998, 1), (5.6254099999999996, 1), (6.3227700000000002, 1), (5.3321899999999998, 11), (6.7402300000000004, 4), (7.6701499999999996, 1), (5.4589400000000001, 3), (6.3089700000000004, 1), (6.5926099999999996, 2), (6.0003000000000002, 5), (5.9845800000000002, 1), (6.4967499999999996, 2), (6.51227, 6), (7.0302600000000002, 1), (5.7271200000000002, 49), (7.5311300000000001, 7), (5.9495800000000001, 2), (5.1487299999999996, 18), (5.7637099999999997, 6), (5.5144500000000001, 44), (6.7988499999999998, 1), (5.2578399999999998, 1)]
binWidth = .2
binnedDataSet = []
#create another list and append the "binning-value"
for item in dataSet:
binnedDataSet.append((item[0], item[1], math.floor(item[0]/binWidth)*binWidth))
energies, sensorHits, binnedEnergy = [[q[i] for q in binnedDataSet] for i in (0,1,2)]
plt.plot(binnedEnergy, sensorHits, 'ro')
plt.show()
これはこれまでのところうまくいきます (ただし、ヒストグラムのようにも見えませんが ;-) しかし、OK) が、各ビンの平均値を計算し、いくつかのエラー バーを追加したいと考えています。
それを行う方法は何ですか?matplotlib のヒストグラムの例を見ましたが、それらはすべてカウントされる 1 次元データを使用しているため、周波数スペクトルが得られます... それは私が本当に望んでいるものではありません。