Ө表記の使用:
関数の上限と下限が同じである場合は、θ表記を使用して時間計算量を記述できます。上限と下限の両方を単一の表記で指定できます。それは単に関数の特徴についてもっと教えてくれます。
例 、
suppose we have a function ,
f(n) = 4logn + loglogn
we can write this function as
f(n) = Ө(logn)
Because its upper bound and lower bound
are O(logn) and Ω(logn) repectively, which are same
so it is legal to write this function as ,
f(n)= Ө(logn)
証拠:
**Finding upper bound :**
f(n) = 4logn+loglogn
For all sufficience value of n>=2
4logn <= 4 logn
loglogn <= logn
Thus ,
f(n) = 4logn+loglogn <= 4logn+logn
<= 5logn
= O(logn) // where c1 can be 5 and n0 =2
**Finding lower bound :**
f(n) = 4logn+loglogn
For all sufficience value of n>=2
f(n) = 4logn+loglogn >= logn
Thus, f(n) = Ω(logn) // where c2 can be 1 and n0=2
so ,
f(n) = Ɵ(logn)

同様に、挿入ソートの場合:
If running time of insertion sort is described by simple function f(n).
In particular , if f(n) = 2n^2+n+1 then
Finding upper bound:
for all sufficient large value of n>=1
2n^2<=2n^2 ------------------- (1)
n <=n^2 --------------------(2)
1 <=n^2 --------------------(3)
adding eq 1,2 and 3, we get.
2n^2+n+1<= 2n^2+n^2+n^2
that is
f(n)<= 4n^2
f(n) = O(n^2) where c=4 and n0=1
Finding lower bound:
for all sufficient large value of n>=1
2n^2+n^2+1 >= 2n^2
that is ,
f(n) >= 2n^2
f(n) = Ω(n^2) where c=2 and n0=1
because upper bound and lower bound are same,
f(n) = Ө(n^2)
if f(n)= 2n^2+n+1 then, c1*g(n) and c2*g(n) are presented by diagram:

最悪の場合、挿入ソートの上限と下限はO(n ^ 2)とΩ(n ^ 2)であるため、最悪の場合、挿入ソートの実行をӨ(n ^ 2))と書くことが合法です。
最良の場合、それはӨ(n)になります。