5

私は一連のデータに対して C# でトレンド関数を作成しようとしていますが、大きな数学ライブラリを使用するのは私のニーズに対して少しやり過ぎのようです。

6,13,7,9,12,4,2,2,1 などの値のリストが与えられます。単純な線形回帰の傾き (減少しているか増加しているかを確認するため) と次の推定値を取得したいと思います。それ以上のことができる大規模なライブラリがあることは知っていますが、もっと単純なアプローチが必要でした。

私は統計にあまり詳しくないので、誰かがこれを行う方法で私を導くことができれば、それはありがたいです.

4

2 に答える 2

5

大規模なライブラリは必要ありません。式は比較的単純です。

x と y データの配列のペアが与えられた場合、次のように最小二乗適合係数を計算します

式 (27) と (28) は、必要な 2 つです。コーディングには、入力配列値の和と二乗和が必要です。

詳細が必要な場合は、Java クラスとその JUnit テスト クラスを次に示します。

import java.util.Arrays;

/**
 * Simple linear regression example using Wolfram Alpha formulas.
 * User: mduffy
 * Date: 10/22/2018
 * Time: 10:56 AM
 * @link https://stackoverflow.com/questions/15623129/simple-linear-regression-for-data-set/15623183?noredirect=1#comment92773017_15623183
 */
public class SimpleLinearRegressionExample {

    public static double slope(double [] x, double [] y) {
        double slope = 0.0;
        if ((x != null) && (y != null) && (x.length == y.length) && (x.length > 0)) {
            slope = correlation(x, y)/sumOfSquares(x);
        }
        return slope;
    }

    public static double intercept(double [] x, double [] y) {
        double intercept = 0.0;
        if ((x != null) && (y != null) && (x.length == y.length) && (x.length > 0)) {
            double xave = average(x);
            double yave = average(y);
            intercept = yave-slope(x, y)*xave;
        }
        return intercept;
    }

    public static double average(double [] values) {
        double average = 0.0;
        if ((values != null) && (values.length > 0)) {
            average = Arrays.stream(values).average().orElse(0.0);
        }
        return average;
    }

    public static double sumOfSquares(double [] values) {
        double sumOfSquares = 0.0;
        if ((values != null) && (values.length > 0)) {
            sumOfSquares = Arrays.stream(values).map(v -> v*v).sum();
            double average = average(values);
            sumOfSquares -= average*average*values.length;
        }
        return sumOfSquares;
    }

    public static double correlation(double [] x, double [] y) {
        double correlation = 0.0;
        if ((x != null) && (y != null) && (x.length == y.length) && (x.length > 0)) {
            for (int i = 0; i < x.length; ++i) {
                correlation += x[i]*y[i];
            }
            double xave = average(x);
            double yave = average(y);
            correlation -= xave*yave*x.length;
        }
        return correlation;
    }
}

JUnit テスト クラス:

import org.junit.Assert;
import org.junit.Test;

/**
 * JUnit tests for simple linear regression example.
 * User: mduffy
 * Date: 10/22/2018
 * Time: 11:53 AM
 * @link https://stackoverflow.com/questions/15623129/simple-linear-regression-for-data-set/15623183?noredirect=1#comment92773017_15623183
 */
public class SimpleLinearRegressionExampleTest {

    public static double tolerance = 1.0e-6;

    @Test
    public void testAverage_NullArray() {
        // setup
        double [] x = null;
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.average(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testAverage_EmptyArray() {
        // setup
        double [] x = {};
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.average(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testAverage_Success() {
        // setup
        double [] x = { 1.0, 2.0, 2.0, 3.0, 4.0, 7.0, 9.0 };
        double expected = 4.0;
        // exercise
        double actual = SimpleLinearRegressionExample.average(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }


    @Test
    public void testSumOfSquares_NullArray() {
        // setup
        double [] x = null;
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.sumOfSquares(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testSumOfSquares_EmptyArray() {
        // setup
        double [] x = {};
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.sumOfSquares(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testSumOfSquares_Success() {
        // setup
        double [] x = { 1.0, 2.0, 2.0, 3.0, 4.0, 7.0, 9.0 };
        double expected = 52.0;
        // exercise
        double actual = SimpleLinearRegressionExample.sumOfSquares(x);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testCorrelation_NullX_NullY() {
        // setup
        double [] x = null;
        double [] y = null;
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.correlation(x, y);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testCorrelation_DifferentLengths() {
        // setup
        double [] x = { 1.0, 2.0, 3.0, 5.0, 8.0 };
        double [] y = { 0.11, 0.12, 0.13, 0.15, 0.18, 0.20 };
        double expected = 0.0;
        // exercise
        double actual = SimpleLinearRegressionExample.correlation(x, y);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testCorrelation_Success() {
        // setup
        double [] x = { 1.0, 2.0, 3.0, 5.0, 8.0 };
        double [] y = { 0.11, 0.12, 0.13, 0.15, 0.18 };
        double expected = 0.308;
        // exercise
        double actual = SimpleLinearRegressionExample.correlation(x, y);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testSlope() {
        // setup
        double [] x = { 1.0, 2.0, 3.0, 4.0 };
        double [] y = { 6.0, 5.0, 7.0, 10.0 };
        double expected = 1.4;
        // exercise
        double actual = SimpleLinearRegressionExample.slope(x, y);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }

    @Test
    public void testIntercept() {
        // setup
        double [] x = { 1.0, 2.0, 3.0, 4.0 };
        double [] y = { 6.0, 5.0, 7.0, 10.0 };
        double expected = 3.5;
        // exercise
        double actual = SimpleLinearRegressionExample.intercept(x, y);
        // assert
        Assert.assertEquals(expected, actual, tolerance);
    }
}
于 2013-03-25T19:34:18.280 に答える