コードの複雑さは O(N*N) [ genesPerSet
=N] です。しかし、値の順序は関係ないという事実を利用して、O(N•log(N)) で順序付けし、O(N) で「スコア」を計算できます。(潜在的に何千倍も速くなる可能性があります)。
また、合計 N*N の比較があります。次にU_Original + U_Random
= N*N であり、U_Random を計算する必要がないことを意味します。また、統計 Zn= Umin-N*N/2;[ Umix=min(U_Original,U_Random)],
abs(Zn/Zd) のみが N*N/2 を中心に対称である場合。必要なアルゴリズムは 1 つだけです。
1.- 最初に (const) 参照によって引数を取ることができます:
int WilcoxinRST::work(const GeneSet &originalGeneSet, const vector<string> &randomGenes)
2.- ベクターの遺伝子 ID を入力します。でも使わない?なんで?
3.- 反復できるのは 2 回だけです。
4.- 信号値 (プローブ強度?) を 1 つのベクトルにまとめて保持し、別のベクトルを使用して各項目が何であるかを通知します。単純に 2 つのベクトルに保持します。
5.-スコアベクトルは必要ありません。合計のみが必要です。
6.- なぜ 2000 万回?「統計」の安定性またはBStrapを計算していると思います。おそらく、同じオリジナルのGeneSetを何度も使用しているでしょう。別の質問で、この関数を呼び出すコードを投稿して、毎回値のベクトルを作成して並べ替えることができると思います。
これが最初の新しい O(N•log(N)) コードです。
以下はコードのクリーンアップですが、それでも O(N*N) であり、高速ですが一定の係数だけです。
次に、同じコードですが、元のコードとさらにコメントが混在しています。
これをデバッグして、どうだったか教えてください。
#include<vector>
#include<algorithm>
int WilcoxinRST::work(const GeneSet &originalGeneSet , const vector<string>& randomGenes)
{
size_t genesPerSet = originalGeneSet.geneCount();
std::vector<double> valueOri(genesPerSet), valueRnd(genesPerSet);
/**
* Fill the valueOri vector with original gene set data, and valueRnd with random data
*/
for (size_t i = 0; i < genesPerSet; i++)
{
valueOri[i] = std::fabs(expressionLevels.getValue( originalGeneSet.getMemberGeneAt(i) , statType ));
valueRnd[i] = std::fabs(expressionLevels.getValue( randomGenes.at(i) , statType ));
}
std::sort(valueOri.begin(),valueOri.end());
std::sort(valueRnd.begin(),valueRnd.end());
/**
* calculate the scores Ua, Ub and U
*/
long U_Original ;
if (statType == Fold_Change || statType == T_Statistic || statType == Z_Statistic
statType == FDR_PValue || statType == PValue )
{
// Higher value is a winner
size_t j=0;
for (size_t i = 0; i < genesPerSet /*totalGenes*/; i++) // i - 2x
{
while(valueOri[i] > valueRnd[j]) ++j ;
U_Original += j;
}
} else { cout << endl << "ERROR. Statistic type not defined." << endl; }
/**
* calculate z
*/
double Zn, Zd, Z;
Zn = U_Original - ((genesPerSet * genesPerSet) / 2);
Zd = std::sqrt( (double) (((genesPerSet * genesPerSet* (genesPerSet + genesPerSet + 1)))) / 12.0);
Z = Zn / Zd;
/**
* Return 0/1/2
* 2: p value < 0.01
* 1: 0.01 < p value < 0.05
* 0: p value > 0.05
*/
if (std::fabs(Z) > 2.303) return 2;
else if (std::fabs(Z) > 1.605) return 1;
else return 0;
}
以下はコードのクリーンアップですが、それでも O(N*N) であり、高速ですが一定の係数だけです。
#include<vector>
using namespace std;
class GeneSet ;
class WilcoxinRST;
int WilcoxinRST::work(const GeneSet &originalGeneSet , const vector<string>& randomGenes)
{
size_t genesPerSet = originalGeneSet.geneCount();
vector<double> valueOri(genesPerSet), valueRnd(genesPerSet);
/**
* Fill the valueOri vector with original gene set data, and valueRnd with random data
*/
for (size_t i = 0; i < genesPerSet; i++)
{
valueOri[i] = fabs(expressionLevels.getValue( originalGeneSet.getMemberGeneAt(i) , statType ));
valueRnd[i] = fabs(expressionLevels.getValue( randomGenes.at(i) , statType ));
}
/**
* calculate the scores Ua, Ub and U
*/
long U_Original = 0, U_Random = 0, U_Final;
if (statType == Fold_Change || statType == T_Statistic || statType == Z_Statistic)
{
// Higher value is a winner
for (size_t i = 0; i < genesPerSet /*totalGenes*/; i++) // i - 2x
{ for (size_t j = 0; j < genesPerSet; j++)
{ U_Random += (valueRnd[i] > valueOri[j]);// i en 2 set=Rnd, j in 1 set=Ori. count how many Ori are less than this Rnd
U_Original+= (valueOri[i] > valueRnd[j]);// i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are less than this Ori
}
}
} else
if (statType == FDR_PValue || statType == PValue)
{
// Lower value is a winner
for (size_t i = 0; i < genesPerSet; i++)
{
for (size_t j = 0; j < genesPerSet; j++)
{ U_Random += (valueRnd[i] < valueOri[j]);// i en 2 set=Rnd, j in 1 set=Ori. count how many Ori are > than this Rnd
U_Original+= (valueOri[i] < valueRnd[j]);// i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are > than this Ori
}
}
} else { cout << endl << "ERROR. Statistic type not defined." << endl; }
U_Final = (U_Original < U_Random) ? U_Original : U_Random;
/**
* calculate z
*/
double Zn, Zd, Z;
Zn = U_Final - ((genesPerSet * genesPerSet) / 2);
Zd = sqrt(
(double) (((genesPerSet * genesPerSet
* (genesPerSet + genesPerSet + 1)))) / 12.0);
Z = Zn / Zd;
/**
* Return 0/1/2
* 2: p value < 0.01
* 1: 0.01 < p value < 0.05
* 0: p value > 0.05
*/
if (fabs(Z) > 2.303) return 2;
else if (fabs(Z) > 1.605) return 1;
else return 0;
}
同じコードですが、元のコードとより多くのコメントが混在しています。
int WilcoxinRST::work(const GeneSet &originalGeneSet , const vector<string>& randomGenes)
{
size_t genesPerSet = originalGeneSet.geneCount();
unsigned int totalGenes, tempScore;
totalGenes = genesPerSet * 2;
//vector<string> geneIDs;
//vector<bool> isOriginal;
//vector<int> rank;
vector<double> valueOri(genesPerSet), valueRnd(genesPerSet);
//vector<int> score;
/**
* Fill the first half of the vectors with original gene set data
*/
for (size_t i = 0; i < genesPerSet; i++)
{
//geneIDs.push_back( originalGeneSet.getMemberGeneAt(i) );
//isOriginal.push_back(true);
valueOri[i] = fabs(expressionLevels.getValue( originalGeneSet.getMemberGeneAt(i) , statType ));
valueRnd[i] = fabs(expressionLevels.getValue( randomGenes.at(i) , statType ));
}
/**
* Fill the second half with random data
*/
//for (unsigned int i = genesPerSet; i < totalGenes; i++) {
// geneIDs.push_back(randomGenes.at(i - genesPerSet));
// isOriginal.push_back(false);
// value.push_back(fabs(expressionLevels.getValue(geneIDs[i], statType)));
//}
//totalGenes = geneIDs.size();
/**
* calculate the scores
*/
/**
* calculate Ua, Ub and U
*/
long U_Original = 0, U_Random = 0, U_Final;
//for (int j = 0; j < genesPerSet; j++) // j in 1 set=Ori. count how many Ori are less than this Rnd
//{
// U_Original += score[j];
//}
//for (unsigned int j = genesPerSet; j < totalGenes; j++) // j in 2 set=Rnd, count how many Rnd are less than this Ori
//{
// U_Random += score[j];
//}
if (statType == Fold_Change || statType == T_Statistic || statType == Z_Statistic)
{
// Higher value is a winner
for (size_t i = 0; i < genesPerSet /*totalGenes*/; i++) // i - 2x
{ //tempScore = 0;
//if (!isOriginal[i]) // i en 2 set=Rnd, j in 1 set=Ori. count how many Ori are less than this Rnd
for (size_t j = 0; j < genesPerSet; j++)
{ U_Random += (valueRnd[i] > valueOri[j]);// i en 2 set=Rnd, j in 1 set=Ori. count how many Ori are less than this Rnd
U_Original+= (valueOri[i] > valueRnd[j]);// i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are less than this Ori
}
//} else
//{
// for (unsigned int j = genesPerSet; j < totalGenes; j++) // i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are less than this Ori
// { if (value.at(i) > value.at(j)) { tempScore++; }
// }
//}
//score.push_back(tempScore);
}
} else
if (statType == FDR_PValue || statType == PValue)
{
// Lower value is a winner
for (size_t i = 0; i < genesPerSet; i++)
{
for (size_t j = 0; j < genesPerSet; j++)
{ U_Random += (valueRnd[i] < valueOri[j]);// i en 2 set=Rnd, j in 1 set=Ori. count how many Ori are > than this Rnd
U_Original+= (valueOri[i] < valueRnd[j]);// i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are > than this Ori
}
//} else
//{
// for (unsigned int j = genesPerSet; j < totalGenes; j++) // i in 1 set=Ori, j in 2 set=Rnd, count how many Rnd are less than this Ori
// { if (value.at(i) > value.at(j)) { tempScore++; }
// }
//}
//score.push_back(tempScore);
}
//for (unsigned int i = 0; i < totalGenes; i++)
//{ tempScore = 0;
// if (!isOriginal[i])
// { for (int j = 0; j < genesPerSet; j++) {
// if (value.at(i) < value.at(j)) { // Rnd i < Ori j increm U_Random
// tempScore++;
// }
// }
// } else {
// for (unsigned int j = genesPerSet; j < totalGenes; j++) { // Ori i < Rnd j. Increm U_Original
// if (value.at(i) < value.at(j)) {
// tempScore++;
// }
// }
// }
// score.push_back(tempScore);
//}
} else { cout << endl << "ERROR. Statistic type not defined." << endl; }
U_Final = (U_Original < U_Random) ? U_Original : U_Random;
/**
* calculate z
*/
double Zn, Zd, Z;
Zn = U_Final - ((genesPerSet * genesPerSet) / 2);
Zd = sqrt(
(double) (((genesPerSet * genesPerSet
* (genesPerSet + genesPerSet + 1)))) / 12.0);
Z = Zn / Zd;
/**
* Return 0/1/2
* 2: p value < 0.01
* 1: 0.01 < p value < 0.05
* 0: p value > 0.05
*/
if (fabs(Z) > 2.303)
return 2;
else if (fabs(Z) > 1.605)
return 1;
else
return 0;
}