円から円への衝突の解決に問題があります。
最初に衝突を検出し、次にボールが衝突した場合、半径の合計でそれらを分離し、速度を設定します。簡単だ。
私の問題は、重力が作用していて、ボールが上から別のボールと衝突するときです。跳ね返るはずが、地面に落ちるまで非常にゆっくりと滑ります。
何が起こっているのかというと、コリジョンの解決後、重力がボールを押し下げ、別のコリジョンを引き起こします。半径の合計 + x でボールを分離しようとしましたが、スライドが少し速くなります。
ビデオはhttp://www.youtube.com/watch?v=tk7qQ9KDFp0&feature=youtu.beで見ることができます。
そして、ここにコリジョンを処理するコードがあります:
for p in world.particle_list:
if not p == self:
if self.pos.sub(p.pos).get_length() <= self.radius * ppm + p.radius * ppm:
p_mass_ratio = float(self.mass) / (self.mass + p.mass)
self_mass_ratio = float(p.mass) / (self.mass + p.mass)
rel_pos = p.pos.sub(self.pos)
shift = rel_pos.set_length(- rel_pos.get_length() + self.radius * ppm + p.radius * ppm)
p.pos = p.pos.add(shift.scale(0.50))
self.pos = self.pos.add(shift.scale(-0.50))
p_speed = p.speed
self_speed = self.speed
self.speed = p_speed.add(self.speed.norm_reflect(rel_pos.set_angle(rel_pos.get_angle() + 90).scale(-self.friction))).scale(0.50 * self_mass_ratio)
p.speed = self_speed.add(p.speed.norm_reflect(rel_pos.set_angle(rel_pos.get_angle() + 90).scale(self.friction))).scale(0.50 * p_mass_ratio)
これを処理するためのベクトル クラスを作成しました。
def dcos(x):
return cos(radians(x))
def dsin(x):
return sin(radians(x))
def dtan(x):
return tan(radians(x))
class Vec(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
self.length = self.get_length()
self.angle = self.get_angle()
def get_length(self):
return sqrt(self.x ** 2 + self.y ** 2)
def get_angle(self):
return atan2(self.y, self.x) * 180 / pi
def add(self, vec1):
new_x = self.x + vec1.x
new_y = self.y + vec1.y
return Vec(new_x, new_y)
def sub(self, vec1):
new_x = self.x - vec1.x
new_y = self.y - vec1.y
return Vec(new_x, new_y)
def scale(self, k):
return Vec(self.x * k, self.y * k)
def set_angle(self, a):
new_x = self.length * dcos(a)
new_y = self.length * dsin(a)
if a == -90 or a == 90:
new_x = 0
if a == 180 or a == 0 or a == -180:
new_y = 0
return Vec(new_x, new_y)
def set_length(self, l):
new_x = l * dcos(self.angle)
new_y = l * dsin(self.angle)
return Vec(new_x, new_y)
def inverse(self):
return Vec(- self.x, - self.y)
def norm_reflect(self, vec1):
if self.get_angle == vec1.get_angle():
return Vec(self.x, self.y)
if vec1.get_angle() >= 0:
return self.set_angle(vec1.get_angle() - self.get_angle() + 90)
else:
return self.set_angle(vec1.get_angle() - self.get_angle() - 90)