このサイトに投稿するのはこれが初めてです。このサイトのガイドラインに完全に従わない場合はご容赦ください。
私の問題はおそらく単純ですが、理解できません。私の騎士のツアー アルゴリズムは、騎士のパスを再帰的に見つけます。インデックス [0,0] で動作し、配列のスペースを完全に反復処理します...ただし、インデックス [0,0] 以外では、プログラムは永遠のようにハングアップします。これが私のコードです:
# knightstour.py
#
# created by: M. Peele
# section: 01
#
# This program implements a brute-force solution for the Knight's tour problem
# using a recursive backtracking algorithm. The Knight's tour is a chessboard
# puzzle in which the objective is to find a sequence of moves by the knight in
# which it visits every square on the board exactly one. It uses a 6x6 array for
# the chessboard where each square is identified by a row and column index, the
# range of which both start at 0. Let the upper-left square of the board be the
# row 0 and column 0 square.
#
# Imports the necessary modules.
from arrays import *
# Initializes the chessboard as a 6x6 array.
chessBoard = Array2D(6, 6)
# Gets the input start position for the knight from the user.
row = int(input("Enter the row: "))
col = int(input("Enter the column: "))
# Main driver function which starts the recursion.
def main():
knightsTour(row, col, 1)
# Recursive function that solves the Knight's Tour problem.
def knightsTour(row, col, move):
# Checks if the given index is in range of the array and is legal.
if _inRange(row, col) and _isLegal(row, col):
chessBoard[row, col] = move # Sets a knight-marker at the given index.
# If the chessBoard is full, returns True and the solved board.
if _isFull(chessBoard):
return True, _draw(chessBoard)
# Checks to see if the knight can make another move. If so, makes that
# move by calling the function again.
possibleOffsets = ((-2, -1), (-2, 1), (-1, 2), (1, 2), \
(2, 1), (2, -1), (1, -2), (-1, -2))
for offset in possibleOffsets:
if knightsTour(row + offset[0], col + offset[1], move + 1):
return True
# If the loop terminates, no possible move can be made. Removes the
# knight-marker at the given index.
chessBoard[row, col] = None
return False
else:
return False
# Determines if the given row, col index is a legal move.
def _isLegal(row, col):
if _inRange(row, col) and chessBoard[row, col] == None:
return True
else:
return False
# Determines if the given row, col index is in range.
def _inRange(row, col):
try:
chessBoard[row, col]
return True
except AssertionError:
return False
# A solution was found if the array is full, meaning that every element in the
# array is filled with a number saying the knight has visited there.
def _isFull(chessBoard):
for row in range(chessBoard.numRows()):
for col in range(chessBoard.numCols()):
if chessBoard[row, col] == None:
return False
return True
# Draws a pictoral representation of the array.
def _draw(chessBoard):
for row in range(chessBoard.numRows()):
for col in range(chessBoard.numCols()):
print("%4s" % chessBoard[row, col], end = " ")
print()
# Calls the main function.
main()