13

長年問題なく使用しているカスタム コンテナがあります。最近、コンテナーにイテレーターを定義すると、 で定義されたすべてのアルゴリズムを効果的に使用できることがわかりました<algorithm>。それだけでなく、スラスト ライブラリ (基本的には Nvidia GPU 用の STL の CUDA バージョンと考えてください) はイテレータを多用しているようで、それらを使用することでそのライブラリも使用できるようになることを望んでいます。

とにかく、これは私自身のイテレータを書く最初の試みなので、私がここに持っているものを投稿して、さらなる支援を求め、私がやっていることは正しいことを確認しようと思いました. iteratorそこで、とクラスの両方をサポートする小さな配列クラスを作成しconst_iteratorました。さまざまな STL アルゴリズムを使用してクラスを実行しましたが、すべて正常に動作しているように見えますが、必ずしもすべてが正しいとは限りません。特に、イテレータで見逃している演算子はありますか? 余分な不要なものを定義しましたか? また、 と のほとんどがiteratorconst_iteratorているため、重複を防ぐ方法はありますか?

私は提案と改善を受け入れています:)

実際の例: http://ideone.com/7YdiQY

#include <cstddef>
#include <iostream>
#include <iterator>
#include <algorithm>

template<typename T>
class my_array{
    T* data_;
    std::size_t size_;

public:

    // ---------------------------------
    // Forward declaration
    // ---------------------------------
    class const_iterator;

    // ---------------------------------
    // iterator class
    // ---------------------------------
    class iterator: public std::iterator<std::random_access_iterator_tag, T>
    {
    public:
        iterator(): p_(NULL) {}
        iterator(T* p): p_(p) {}
        iterator(const iterator& other): p_(other.p_) {}
        const iterator& operator=(const iterator& other) {p_ = other.p_; return other;}

        iterator& operator++()    {p_++; return *this;} // prefix++
        iterator  operator++(int) {iterator tmp(*this); ++(*this); return tmp;} // postfix++
        iterator& operator--()    {p_--; return *this;} // prefix--
        iterator  operator--(int) {iterator tmp(*this); --(*this); return tmp;} // postfix--

        void     operator+=(const std::size_t& n)  {p_ += n;}
        void     operator+=(const iterator& other) {p_ += other.p_;}
        iterator operator+ (const std::size_t& n)  {iterator tmp(*this); tmp += n; return tmp;}
        iterator operator+ (const iterator& other) {iterator tmp(*this); tmp += other; return tmp;}

        void        operator-=(const std::size_t& n)  {p_ -= n;}
        void        operator-=(const iterator& other) {p_ -= other.p_;}
        iterator    operator- (const std::size_t& n)  {iterator tmp(*this); tmp -= n; return tmp;}
        std::size_t operator- (const iterator& other) {return p_ - other.p_;}

        bool operator< (const iterator& other) {return (p_-other.p_)< 0;}
        bool operator<=(const iterator& other) {return (p_-other.p_)<=0;}
        bool operator> (const iterator& other) {return (p_-other.p_)> 0;}
        bool operator>=(const iterator& other) {return (p_-other.p_)>=0;}
        bool operator==(const iterator& other) {return  p_ == other.p_; }
        bool operator!=(const iterator& other) {return  p_ != other.p_; }

        T& operator[](const int& n) {return *(p_+n);}
        T& operator*() {return *p_;}
        T* operator->(){return  p_;}

    private:
        T* p_;

        friend class const_iterator;
    };

    // ---------------------------------
    // const_iterator class
    // ---------------------------------
    class const_iterator: public std::iterator<std::random_access_iterator_tag, T>
    {
    public:
        const_iterator(): p_(NULL) {}
        const_iterator(const T* p): p_(p) {}
        const_iterator(const iterator& other): p_(other.p_) {}
        const_iterator(const const_iterator& other): p_(other.p_) {}
        const const_iterator& operator=(const const_iterator& other) {p_ = other.p_; return other;}
        const const_iterator& operator=(const iterator& other) {p_ = other.p_; return other;}

        const_iterator& operator++()    {p_++; return *this;} // prefix++
        const_iterator  operator++(int) {const_iterator tmp(*this); ++(*this); return tmp;} // postfix++
        const_iterator& operator--()    {p_--; return *this;} // prefix--
        const_iterator  operator--(int) {const_iterator tmp(*this); --(*this); return tmp;} // postfix--

        void           operator+=(const std::size_t& n)              {p_ += n;}
        void           operator+=(const const_iterator& other)       {p_ += other.p_;}
        const_iterator operator+ (const std::size_t& n)        const {const_iterator tmp(*this); tmp += n; return tmp;}
        const_iterator operator+ (const const_iterator& other) const {const_iterator tmp(*this); tmp += other; return tmp;}

        void           operator-=(const std::size_t& n)              {p_ -= n;}
        void           operator-=(const const_iterator& other)       {p_ -= other.p_;}
        const_iterator operator- (const std::size_t& n)        const {const_iterator tmp(*this); tmp -= n; return tmp;}
        std::size_t    operator- (const const_iterator& other) const {return p_ - other.p_;}

        bool operator< (const const_iterator& other) const {return (p_-other.p_)< 0;}
        bool operator<=(const const_iterator& other) const {return (p_-other.p_)<=0;}
        bool operator> (const const_iterator& other) const {return (p_-other.p_)> 0;}
        bool operator>=(const const_iterator& other) const {return (p_-other.p_)>=0;}
        bool operator==(const const_iterator& other) const {return  p_ == other.p_; }
        bool operator!=(const const_iterator& other) const {return  p_ != other.p_; }

        const T& operator[](const int& n) const {return *(p_+n);}
        const T& operator*()  const {return *p_;}
        const T* operator->() const {return  p_;}

    private:
        const T* p_;
    };

    my_array()
        : data_(NULL), size_(0)
    {}
    my_array(std::size_t size)
        : data_(new T[size]), size_(size)
    {}
    my_array(const my_array<T>& other){
        size_ = other.size_;
        data_ = new T[size_];
        for (std::size_t i = 0; i<size_; i++)
            data_[i] = other.data_[i];
    }
    my_array(const const_iterator& first, const const_iterator& last){
        size_ = last - first;
        data_ = new T[size_];

        for (std::size_t i = 0; i<size_; i++)
            data_[i] = first[i];
    }

    ~my_array(){
        delete [] data_;
    }
    const my_array<T>& operator=(const my_array<T>& other){
        size_ = other.size_;
        data_ = new T[size_];
        for (std::size_t i = 0; i<size_; i++)
            data_[i] = other.data_[i];
        return other;
    }
    const T& operator[](std::size_t idx) const {return data_[idx];}
    T& operator[](std::size_t& idx) {return data_[idx];}
    std::size_t size(){return size_;}

    iterator begin(){ return iterator(data_); }
    iterator end()  { return iterator(data_+size_); }
    const_iterator begin() const{ return const_iterator(data_); }
    const_iterator end() const  { return const_iterator(data_+size_);}
};

template<typename T>
void print(T t) {
    std::cout << t << std::endl;
}

int main(){

    // works!
    int list [] = {1, 3, 5, 2, 4, 3, 5, 10, 10};
    my_array<int> a(list, list+sizeof(list)/sizeof(int));

    // works!
    for (my_array<int>::const_iterator it = a.begin(), end = a.end();
         it != end; ++it)
        std::cout << ' ' << *it;
    std::cout << std::endl;

    // works!
    std::for_each(a.begin(), a.end(), print<int>);
    std::cout << std::endl;

    // works!
    my_array<int> b(a.size());
    std::copy(a.begin(), a.end(), b.begin());

    // works!
    my_array<int>::iterator end = std::remove(a.begin(), a.end(), 5);
    std::for_each(a.begin(), end, print<int>);
    std::cout << std::endl;

    // works!
    std::random_shuffle(a.begin(), end);
    std::for_each(a.begin(), end, print<int>);
    std::cout << std::endl;

    // works!
    std::cout << "Counts of 3 in array = " << std::count(a.begin(), end, 3) << std::endl << std::endl;

    // works!
    std::sort(a.begin(), end);
    std::for_each(a.begin(), end, print<int>);
    std::cout << std::endl;

    // works!
    if (!std::binary_search(a.begin(), a.end(), 5))
        std::cout << "Removed!" << std::endl;

    return 0;
}
4

2 に答える 2

1

Boostiterator_adaptorはコードを大幅に簡素化します。ドキュメントには、たとえば、リンクされたリスト反復子のこの例があります

template <class Value>
class node_iter
  : public boost::iterator_adaptor<
        node_iter<Value>                // Derived
      , Value*                          // Base
      , boost::use_default              // Value
      , boost::forward_traversal_tag    // CategoryOrTraversal
    >
{
 private:
    struct enabler {};  // a private type avoids misuse

 public:
    node_iter()
      : node_iter::iterator_adaptor_(0) {}

    explicit node_iter(Value* p)
      : node_iter::iterator_adaptor_(p) {}

    template <class OtherValue>
    node_iter(
        node_iter<OtherValue> const& other
      , typename boost::enable_if<
            boost::is_convertible<OtherValue*,Value*>
          , enabler
        >::type = enabler()
    )
      : node_iter::iterator_adaptor_(other.base()) {}

 private:
    friend class boost::iterator_core_access;
    void increment() { this->base_reference() = this->base()->next(); }
};

この例では、デフォルト コンストラクター、ノード ポインターを受け取るコンストラクター、ノード ポインターに変換できる要素のみを受け入れる一般化されたコピー コンストラクター、およびインクリメント関数のみが提供されていることに注意してください。インクリメント関数は、 と の両方で共有される実装の詳細operator++()ですoperator++(int)

他のすべてのボイラープレートは、から派生することによって自動的に生成されboost::iterator_adaptorます。typedefこれには、 からの派生からも取得できるすべてのネストされたものstd::iterator、およびオーバーロードされたすべての演算子 (++、*、->、==、!=、advance)、および完全に標準に準拠したイテレーターにするためのその他すべてが含まれます。

a を渡して aValue const*を使用することにより、適切な変更を加えてすべてのコードを再利用typedefする a を定義できます。const_iteratorこの例を今勉強することで、今後の作業を大幅に節約できます。

于 2013-05-08T08:12:23.657 に答える