7

要因名を区切り記号で分割することにより、3 つの要因列に分割する必要がある要因列を含む大きなデータ フレームがあります。これが私の現在のアプローチです。これは、大きなデータ フレーム (場合によっては数百万行) では非常に遅くなります。

data <- readRDS("data.rds")
data.df <- reshape2:::melt.array(data)
head(data.df)
##  Time Location    Class Replicate Population
##1    1        1 LIDE.1.S         1 0.03859605
##2    2        1 LIDE.1.S         1 0.03852957
##3    3        1 LIDE.1.S         1 0.03846853
##4    4        1 LIDE.1.S         1 0.03841260
##5    5        1 LIDE.1.S         1 0.03836147
##6    6        1 LIDE.1.S         1 0.03831485

Rprof("str.out")
cl <- which(names(data.df)=="Class")
Classes <- do.call(rbind, strsplit(as.character(data.df$Class), "\\."))
colnames(Classes) <- c("Species", "SizeClass", "Infected")
data.df <- cbind(data.df[,1:(cl-1)],Classes,data.df[(cl+1):(ncol(data.df))])
Rprof(NULL)

head(data.df)
##  Time Location Species SizeClass Infected Replicate Population
##1    1        1    LIDE         1        S         1 0.03859605
##2    2        1    LIDE         1        S         1 0.03852957
##3    3        1    LIDE         1        S         1 0.03846853
##4    4        1    LIDE         1        S         1 0.03841260
##5    5        1    LIDE         1        S         1 0.03836147
##6    6        1    LIDE         1        S         1 0.03831485

summaryRprof("str.out")

$by.self
                 self.time self.pct total.time total.pct
"strsplit"            1.34    50.00       1.34     50.00
"<Anonymous>"         1.16    43.28       1.16     43.28
"do.call"             0.04     1.49       2.54     94.78
"unique.default"      0.04     1.49       0.04      1.49
"data.frame"          0.02     0.75       0.12      4.48
"is.factor"           0.02     0.75       0.02      0.75
"match"               0.02     0.75       0.02      0.75
"structure"           0.02     0.75       0.02      0.75
"unlist"              0.02     0.75       0.02      0.75

$by.total
                       total.time total.pct self.time self.pct
"do.call"                    2.54     94.78      0.04     1.49
"strsplit"                   1.34     50.00      1.34    50.00
"<Anonymous>"                1.16     43.28      1.16    43.28
"cbind"                      0.14      5.22      0.00     0.00
"data.frame"                 0.12      4.48      0.02     0.75
"as.data.frame.matrix"       0.08      2.99      0.00     0.00
"as.data.frame"              0.08      2.99      0.00     0.00
"as.factor"                  0.08      2.99      0.00     0.00
"factor"                     0.06      2.24      0.00     0.00
"unique.default"             0.04      1.49      0.04     1.49
"unique"                     0.04      1.49      0.00     0.00
"is.factor"                  0.02      0.75      0.02     0.75
"match"                      0.02      0.75      0.02     0.75
"structure"                  0.02      0.75      0.02     0.75
"unlist"                     0.02      0.75      0.02     0.75
"[.data.frame"               0.02      0.75      0.00     0.00
"["                          0.02      0.75      0.00     0.00

$sample.interval
[1] 0.02

$sampling.time
[1] 2.68

この操作を高速化する方法はありますか? 「種」、「サイズクラス」、および「感染」の各カテゴリには少数 (<5) の数があり、これらが何であるかは事前にわかっていることに注意してください。

ノート:

  • stringr::str_split_fixedこのタスクを実行しますが、それ以上速くはなりません
  • データ フレームは、実際には、関連付けられたレベルがディメンションreshape::meltである配列を呼び出すことによって最初に生成されます。Classそこからここに行くためのより速い方法があれば、素晴らしいです。
  • data.rdshttp://dl.getdropbox.com/u/3356641/data.rds
4

3 に答える 3

6

これはおそらくかなりの増加を提供するはずです:

library(data.table)
DT <- data.table(data.df)


DT[, c("Species", "SizeClass", "Infected") 
      := as.list(strsplit(Class, "\\.")[[1]]), by=Class ]

増加の理由:

  1. data.table 事前に列にメモリを割り当てます
  2. data.frame のすべての列割り当ては、データ全体を再割り当てします (対照的に、data.table はそうしません)。
  3. このbyステートメントを使用すると、strsplit一意の値ごとに 1 回ずつタスクを実装できます。

これは、プロセス全体の簡単な方法です。

# Save the new col names as a character vector 
newCols <- c("Species", "SizeClass", "Infected") 

# split the string, then convert the new cols to columns
DT[, c(newCols) := as.list(strsplit(as.character(Class), "\\.")[[1]]), by=Class ]
DT[, c(newCols) := lapply(.SD, factor), .SDcols=newCols]

# remove the old column. This is instantaneous. 
DT[, Class := NULL]

## Have a look: 
DT[, lapply(.SD, class)]
#       Time Location Replicate Population Species SizeClass Infected
# 1: integer  integer   integer    numeric  factor    factor   factor

DT
于 2013-05-20T00:55:13.623 に答える
3

gsubすべてを分割して元に戻すのではなく、必要な文字列の部分を抽出するだけで、速度がかなり向上する可能性があります。

data <- readRDS("~/Downloads/data.rds")
data.df <- reshape2:::melt.array(data)

# using `strsplit`
system.time({
cl <- which(names(data.df)=="Class")
Classes <- do.call(rbind, strsplit(as.character(data.df$Class), "\\."))
colnames(Classes) <- c("Species", "SizeClass", "Infected")
data.df <- cbind(data.df[,1:(cl-1)],Classes,data.df[(cl+1):(ncol(data.df))])
})

user  system elapsed 
3.349   0.062   3.411 

#using `gsub`
system.time({
data.df$Class <- as.character(data.df$Class)
data.df$SizeClass <- gsub("(\\w+)\\.(\\d+)\\.(\\w+)", "\\2", data.df$Class,
  perl = TRUE)
data.df$Infected  <- gsub("(\\w+)\\.(\\d+)\\.(\\w+)", "\\3", data.df$Class, 
  perl = TRUE)
data.df$Class  <- gsub("(\\w+)\\.(\\d+)\\.(\\w+)", "\\1", data.df$Class, 
  perl = TRUE)
})

user  system elapsed 
0.812   0.037   0.848 
于 2013-05-20T01:04:49.810 に答える