2 つの数値の HCF を見つけるアルゴリズムはr = a*aqr + b*bqr
、正しい式をすべて入力したと確信しているにもかかわらず、部分的にしか機能していません。基本的には、HCF を見つけることができますが、ベズーの補題のデモンストレーションも提供しようとしているので、前述の表示された正当化を表示する必要があります。プログラム:
# twonumbers.py
inp = 0
a = 0
b = 0
mul = 0
s = 1
r = 1
q = 0
res = 0
aqc = 1
bqc = 0
aqd = 0
bqd = 1
aqr = 0
bqr = 0
res = 0
temp = 0
fin_hcf = 0
fin_lcd = 0
seq = []
inp = input('Please enter the first number, "a":\n')
a = inp
inp = input('Please enter the second number, "b":\n')
b = inp
mul = a * b # Will come in handy later!
if a < b:
print 'As you have entered the first number as smaller than the second, the program will swap a and b before proceeding.'
temp = a
a = b
b = temp
else:
print 'As the inputted value a is larger than or equal to b, the program has not swapped the values a and b.'
print 'Thank you. The program will now compute the HCF and simultaneously demonstrate Bezout\'s Lemma.'
print `a`+' = ('+`aqc`+' x '+`a`+') + ('+`bqc`+' x '+`b`+').'
print `b`+' = ('+`aqd`+' x '+`a`+') + ('+`bqd`+' x '+`b`+').'
seq.append(a)
seq.append(b)
c = a
d = b
while r != 0:
if s != 1:
c = seq[s-1]
d = seq[s]
res = divmod(c,d)
q = res[0]
r = res[1]
aqr = aqc - (q * aqd)#These two lines are the main part of the justification
bqr = bqc - (q * aqd)#-/
print `r`+' = ('+`aqr`+' x '+`a`+') + ('+`bqr`+' x '+`b`+').'
aqd = aqr
bqd = bqr
aqc = aqd
bqc = bqd
s = s + 1
seq.append(r)
fin_hcf = seq[-2] # Finally, the HCF.
fin_lcd = mul / fin_hcf
print 'Using Euclid\'s Algorithm, we have now found the HCF of '+`a`+' and '+`b`+': it is '+`fin_hcf`+'.'
print 'We can now also find the LCD (LCM) of '+`a`+' and '+`b`+' using the following method:'
print `a`+' x '+`b`+' = '+`mul`+';'
print `mul`+' / '+`fin_hcf`+' (the HCF) = '+`fin_lcd`+'.'
print 'So, to conclude, the HCF of '+`a`+' and '+`b`+' is '+`fin_hcf`+' and the LCD (LCM) of '+`a`+' and '+`b`+' is '+`fin_lcd`+'.'
これで何が問題なのかを見つけるのを手伝っていただければ幸いです。