私はこの非常に奇妙な問題を抱えており、何か間違ったことをしている可能性があると思いますが、Pyramidal Lucas Kanade の opencv1 実装と opencv2 実装があります。違いは、opencv2 は opencv1 と比較して実行に非常に長い時間がかかることです (特に goodFeaturesToTrack 関数)。さらに、opencv1 実装に opencv2 ライブラリとヘッダーを含めると、これも非常に遅くなります (画像 2 枚あたり 0.002 秒、画像 2 枚あたり 1 秒)。私は何か間違ったことをしていますか?
Windows 7、64 ビット。これは、1 秒あたり約 1 フレームで、非常に遅く実行される opencv2 コードです。前述したように、opencv1 実装を使用してライブラリ バージョンを切り替えると、同じように速度が 10 倍以上低下します。これは非常に奇妙だと思いますが、Google は何の情報も見つけられませんでした。ありがとう!!!
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
#include <cmath>
using namespace cv;
using namespace std;
int64 now, then;
double elapsed_seconds, tickspersecond=cvGetTickFrequency() * 1.0e6;
int main(int argc, char** argv)
{
// Load two images and allocate other structures
Mat imgA = imread("0000.png", CV_LOAD_IMAGE_GRAYSCALE);
Mat imgB = imread("0001.png", CV_LOAD_IMAGE_GRAYSCALE);
Size img_sz = imgA.size();
Mat imgC(img_sz,1);
int win_size = 15;
int maxCorners = 100;
double qualityLevel = 0.05;
double minDistance = 2.0;
int blockSize = 3;
double k = 0.04;
std::vector<cv::Point2f> cornersA;
cornersA.reserve(maxCorners);
std::vector<cv::Point2f> cornersB;
cornersB.reserve(maxCorners);
then = cvGetTickCount();
goodFeaturesToTrack( imgA,cornersA,maxCorners,qualityLevel,minDistance,cv::Mat(),blockSize,true);
goodFeaturesToTrack( imgB,cornersB,maxCorners,qualityLevel,minDistance,cv::Mat(),blockSize,true);
now = cvGetTickCount();
cout << (double)(now - then) / tickspersecond;
cornerSubPix( imgA, cornersA, Size( win_size, win_size ), Size( -1, -1 ),
TermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03 ) );
cornerSubPix( imgB, cornersB, Size( win_size, win_size ), Size( -1, -1 ),
TermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03 ) );
// Call Lucas Kanade algorithm
CvSize pyr_sz = Size( img_sz.width+8, img_sz.height/3 );
std::vector<uchar> features_found;
features_found.reserve(maxCorners);
std::vector<float> feature_errors;
feature_errors.reserve(maxCorners);
calcOpticalFlowPyrLK( imgA, imgB, cornersA, cornersB, features_found, feature_errors ,
Size( win_size, win_size ), 5,
cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.3 ), 0 );
// Make an image of the results
for( int i=0; i < features_found.size(); i++ ){
// cout<<"Error is "<<feature_errors[i]<<endl;
//continue;
//cout<<"Got it"<<endl;
Point p0( ceil( cornersA[i].x ), ceil( cornersA[i].y ) );
Point p1( ceil( cornersB[i].x ), ceil( cornersB[i].y ) );
line( imgC, p0, p1, CV_RGB(255,255,255), 2 );
}
namedWindow( "ImageA", 0 );
namedWindow( "ImageB", 0 );
namedWindow( "LKpyr_OpticalFlow", 0 );
imshow( "ImageA", imgA );
imshow( "ImageB", imgB );
imshow( "LKpyr_OpticalFlow", imgC );
cvWaitKey(0);
return 0;
}