数値積分は、予想よりも指数関数的に長くかかっています。メッシュ上で反復を実装する方法が要因になるかどうかを知りたいです。私のコードは次のようになります。
import numpy as np
import itertools as it
U = np.linspace(0, 2*np.pi)
V = np.linspace(0, np.pi)
for (u, v) in it.product(U,V):
# values = computation on each grid point, does not call any outside functions
# solution = sum(values)
return solution
計算は長いので省略しました。私の質問は、具体的には、パラメーター空間 (u, v) で計算を実装した方法に関するものです。次のような代替案を知っていnumpy.meshgrid
ます。ただし、これらはすべて (非常に大きな) 行列のインスタンスを作成するようであり、それらをメモリに格納すると処理が遅くなると思います。
私のプログラムを高速化する代替手段はありit.product
ますか、それともボトルネックを他の場所で探す必要がありますか?
編集: 問題の for ループは次のとおりです (ベクトル化できるかどうかを確認するため)。
import random
import numpy as np
import itertools as it
##########################################################################
# Initialize the inputs with random (to save space)
##########################################################################
mat1 = np.array([[random.random() for i in range(3)] for i in range(3)])
mat2 = np.array([[random.random() for i in range(3)] for i in range(3)])
a1, a2, a3 = np.array([random.random() for i in range(3)])
plane_normal = np.array([random.random() for i in range(3)])
plane_point = np.array([random.random() for i in range(3)])
d = np.dot(plane_normal, plane_point)
truthval = True
##########################################################################
# Initialize the loop
##########################################################################
N = 100
U = np.linspace(0, 2*np.pi, N + 1, endpoint = False)
V = np.linspace(0, np.pi, N + 1, endpoint = False)
U = U[1:N+1] V = V[1:N+1]
Vsum = 0
Usum = 0
##########################################################################
# The for loops starts here
##########################################################################
for (u, v) in it.product(U,V):
cart_point = np.array([a1*np.cos(u)*np.sin(v),
a2*np.sin(u)*np.sin(v),
a3*np.cos(v)])
surf_normal = np.array(
[2*x / a**2 for (x, a) in zip(cart_point, [a1,a2,a3])])
differential_area = \
np.sqrt((a1*a2*np.cos(v)*np.sin(v))**2 + \
a3**2*np.sin(v)**4 * \
((a2*np.cos(u))**2 + (a1*np.sin(u))**2)) * \
(np.pi**2 / (2*N**2))
if (np.dot(plane_normal, cart_point) - d > 0) == truthval:
perp_normal = plane_normal
f = np.dot(np.dot(mat2, surf_normal), perp_normal)
Vsum += f*differential_area
else:
perp_normal = - plane_normal
f = np.dot(np.dot(mat2, surf_normal), perp_normal)
Usum += f*differential_area
integral = abs(Vsum) + abs(Usum)