7

データがディスク上にあることを確認するための情報 ( http://winntfs.com/2012/11/29/windows-write-caching-part-2-an-overview-for-application-developers/ ) から、たとえば、停電の場合、Windows プラットフォームでFlushFileBuffersは、バッファが実際にディスク デバイス キャッシュからストレージ メディア自体にフラッシュされるという最良の保証を得るために、その「fsync」バージョンに依存する必要があるようです。と の組み合わせは、デバイス キャッシュのフラッシュを保証するものFILE_FLAG_NO_BUFFERINGFILE_FLAG_WRITE_THROUGHはなく、この情報が正しい場合、ファイル システム キャッシュに影響を与えるだけです。

「トランザクション的に」更新する必要があるかなり大きなファイルで作業するという事実を考えると、これはトランザクションコミットの最後に「fsync」を実行することを意味します。そこで、その際のパフォーマンスをテストするための小さなアプリを作成しました。基本的に、8回の書き込みを使用して8メモリページサイズのランダムバイトのバッチの順次書き込みを実行し、次にフラッシュします。バッチはループで繰り返され、多くのページが書き込まれるたびにパフォーマンスが記録されます。さらに、2 つの構成可能なオプションがあります。フラッシュ時に fsync を実行するか、ページの書き込みを開始する前に、ファイルの最後の位置にバイトを書き込むかどうかです。

// Code updated to reflect new results as discussed in answer below.
// 26/Aug/2013: Code updated again to reflect results as discussed in follow up question.
// 28/Aug/2012: Increased file stream buffer to ensure 8 page flushes.
class Program
{
    static void Main(string[] args)
    {
        BenchSequentialWrites(reuseExistingFile:false);
    }
    public static void BenchSequentialWrites(bool reuseExistingFile = false)
    {
        Tuple<string, bool, bool, bool, bool>[] scenarios = new Tuple<string, bool, bool, bool, bool>[]
        {   // output csv, fsync?, fill end?, write through?, mem map?
            Tuple.Create("timing FS-E-B-F.csv", true, false, false, false),
            Tuple.Create("timing NS-E-B-F.csv", false, false, false, false),
            Tuple.Create("timing FS-LB-B-F.csv", true, true, false, false),
            Tuple.Create("timing NS-LB-B-F.csv", false, true, false, false),
            Tuple.Create("timing FS-E-WT-F.csv", true, false, true, false),
            Tuple.Create("timing NS-E-WT-F.csv", false, false, true, false),
            Tuple.Create("timing FS-LB-WT-F.csv", true, true, true, false),
            Tuple.Create("timing NS-LB-WT-F.csv", false, true, true, false),
            Tuple.Create("timing FS-E-B-MM.csv", true, false, false, true),
            Tuple.Create("timing NS-E-B-MM.csv", false, false, false, true),
            Tuple.Create("timing FS-LB-B-MM.csv", true, true, false, true),
            Tuple.Create("timing NS-LB-B-MM.csv", false, true, false, true),
            Tuple.Create("timing FS-E-WT-MM.csv", true, false, true, true),
            Tuple.Create("timing NS-E-WT-MM.csv", false, false, true, true),
            Tuple.Create("timing FS-LB-WT-MM.csv", true, true, true, true),
            Tuple.Create("timing NS-LB-WT-MM.csv", false, true, true, true),
        };
        foreach (var scenario in scenarios)
        {
            Console.WriteLine("{0,-12} {1,-16} {2,-16} {3,-16} {4:F2}", "Total pages", "Interval pages", "Total time", "Interval time", "MB/s");
            CollectGarbage();
            var timingResults = SequentialWriteTest("test.data", !reuseExistingFile, fillEnd: scenario.Item3, nPages: 200 * 1000, fSync: scenario.Item2, writeThrough: scenario.Item4, writeToMemMap: scenario.Item5);
            using (var report = File.CreateText(scenario.Item1))
            {
                report.WriteLine("Total pages,Interval pages,Total bytes,Interval bytes,Total time,Interval time,MB/s");
                foreach (var entry in timingResults)
                {
                    Console.WriteLine("{0,-12} {1,-16} {2,-16} {3,-16} {4:F2}", entry.Item1, entry.Item2, entry.Item5, entry.Item6, entry.Item7);
                    report.WriteLine("{0},{1},{2},{3},{4},{5},{6}", entry.Item1, entry.Item2, entry.Item3, entry.Item4, entry.Item5.TotalSeconds, entry.Item6.TotalSeconds, entry.Item7);
                }
            }
        }
    }

    public unsafe static IEnumerable<Tuple<long, long, long, long, TimeSpan, TimeSpan, double>> SequentialWriteTest(
        string fileName,
        bool createNewFile,
        bool fillEnd,
        long nPages,
        bool fSync = true,
        bool writeThrough = false,
        bool writeToMemMap = false,
        long pageSize = 4096)
    {
        // create or open file and if requested fill in its last byte.
        var fileMode = createNewFile ? FileMode.Create : FileMode.OpenOrCreate;
        using (var tmpFile = new FileStream(fileName, fileMode, FileAccess.ReadWrite, FileShare.ReadWrite, (int)pageSize))
        {
            Console.WriteLine("Opening temp file with mode {0}{1}", fileMode, fillEnd ? " and writing last byte." : ".");
            tmpFile.SetLength(nPages * pageSize);
            if (fillEnd)
            {
                tmpFile.Position = tmpFile.Length - 1;
                tmpFile.WriteByte(1);
                tmpFile.Position = 0;
                tmpFile.Flush(true);
            }
        }
        // Make sure any flushing / activity has completed
        System.Threading.Thread.Sleep(TimeSpan.FromMinutes(1));
        System.Threading.Thread.SpinWait(50); // warm up.

        var buf = new byte[pageSize];
        new Random().NextBytes(buf);
        var ms = new System.IO.MemoryStream(buf);

        var stopwatch = new System.Diagnostics.Stopwatch();
        var timings = new List<Tuple<long, long, long, long, TimeSpan, TimeSpan, double>>();
        var pageTimingInterval = 8 * 2000;
        var prevPages = 0L;
        var prevElapsed = TimeSpan.FromMilliseconds(0);

        // Open file
        const FileOptions NoBuffering = ((FileOptions)0x20000000);
        var options = writeThrough ? (FileOptions.WriteThrough | NoBuffering) : FileOptions.None;
        using (var file = new FileStream(fileName, FileMode.Open, FileAccess.ReadWrite, FileShare.ReadWrite, (int)(16 *pageSize), options))
        {
            stopwatch.Start();
            if (writeToMemMap)
            {
                // write pages through memory map.
                using (var mmf = MemoryMappedFile.CreateFromFile(file, Guid.NewGuid().ToString(), file.Length, MemoryMappedFileAccess.ReadWrite, null, HandleInheritability.None, true))
                using (var accessor = mmf.CreateViewAccessor(0, file.Length, MemoryMappedFileAccess.ReadWrite))
                {
                    byte* base_ptr = null;
                    accessor.SafeMemoryMappedViewHandle.AcquirePointer(ref base_ptr);
                    var offset = 0L;
                    for (long i = 0; i < nPages / 8; i++)
                    {
                        using (var memStream = new UnmanagedMemoryStream(base_ptr + offset, 8 * pageSize, 8 * pageSize, FileAccess.ReadWrite))
                        {
                            for (int j = 0; j < 8; j++)
                            {
                                ms.CopyTo(memStream);
                                ms.Position = 0;
                            }
                        }
                        FlushViewOfFile((IntPtr)(base_ptr + offset), (int)(8 * pageSize));
                        offset += 8 * pageSize;
                        if (fSync)
                            FlushFileBuffers(file.SafeFileHandle);

                        if (((i + 1) * 8) % pageTimingInterval == 0)
                            timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, (i + 1) * 8, ref prevPages, pageSize));
                    }
                    accessor.SafeMemoryMappedViewHandle.ReleasePointer();
                }
            }
            else
            {
                for (long i = 0; i < nPages / 8; i++)
                {
                    for (int j = 0; j < 8; j++)
                    {
                        ms.CopyTo(file);
                        ms.Position = 0;
                    }
                    file.Flush(fSync);
                    if (((i + 1) * 8) % pageTimingInterval == 0)
                        timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, (i + 1) * 8, ref prevPages, pageSize));
                }
            }
        }
        timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, nPages, ref prevPages, pageSize));
        return timings;
    }

    private static Tuple<long, long, long, long, TimeSpan, TimeSpan, double> Report(TimeSpan elapsed, ref TimeSpan prevElapsed, long curPages, ref long prevPages, long pageSize)
    {
        var intervalPages = curPages - prevPages;
        var intervalElapsed = elapsed - prevElapsed;
        var intervalPageSize = intervalPages * pageSize;
        var mbps = (intervalPageSize / (1024.0 * 1024.0)) / intervalElapsed.TotalSeconds;
        prevElapsed = elapsed;
        prevPages = curPages;
        return Tuple.Create(curPages, intervalPages, curPages * pageSize, intervalPageSize, elapsed, intervalElapsed, mbps);
    }

    private static void CollectGarbage()
    {
        GC.Collect();
        GC.WaitForPendingFinalizers();
        System.Threading.Thread.Sleep(200);
        GC.Collect();
        GC.WaitForPendingFinalizers();
        System.Threading.Thread.SpinWait(10);
    }

    [DllImport("kernel32.dll", SetLastError = true)]
    static extern bool FlushViewOfFile(
        IntPtr lpBaseAddress, int dwNumBytesToFlush);

    [DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Auto)]
    static extern bool FlushFileBuffers(SafeFileHandle hFile);
}

私が得ているパフォーマンス結果 (64 ビット Win 7、遅いスピンドル ディスク) は、あまり期待できるものではありません。「fsync」のパフォーマンスは、フラッシュされる「ダーティ」データの量ではなく、フラッシュされるファイルのサイズに大きく依存するようです。下のグラフは、小さなベンチマーク アプリの 4 つの異なる設定オプションの結果を示しています。

4 つのシナリオのベンチマーク タイミング

ご覧のとおり、「fsync」のパフォーマンスは、ファイルが大きくなるにつれて指数関数的に低下します (数 GB で実際に停止するまで)。また、ディスク自体はそれほど多くのことをしていないようです (つまり、リソース モニターは、そのアクティブな時間を数パーセント程度しか示しておらず、そのディスク キューはほとんどの時間ほとんど空です)。

「fsync」のパフォーマンスは、通常のバッファリングされたフラッシュよりもかなり悪いと予想していましたが、多かれ少なかれ一定で、ファイルサイズに依存しないと予想していました。このように、単一の大きなファイルと組み合わせて使用​​ できないことを示唆しているようです.

誰かが説明、異なる経験、またはデータがディスク上にあることを保証し、多かれ少なかれ一定の予測可能なパフォーマンスを持つ別のソリューションを持っていますか?

UPDATED 以下の回答の新しい情報を参照してください。

4

4 に答える 4

5

毎回ファイルを再作成しているため、テストでは、同期の実行時に速度が指数関数的に低下することが示されています。この場合、純粋なシーケンシャルな書き込みではなくなります。書き込みごとにファイルも大きくなり、ファイル システム内のファイル メタデータを更新するために複数回のシークが必要になります。既存の完全に割り当てられたファイルを使用してこれらすべてのジョブを実行した場合、それらのメタデータの更新が干渉しないため、はるかに高速な結果が得られます。

Linux ボックスで同様のテストを実行しました。毎回ファイルを再作成する際の結果:

mmap    direct  last    sync    time
0   0   0   0    0.882293s
0   0   0   1    27.050636s
0   0   1   0    0.832495s
0   0   1   1    26.966625s
0   1   0   0    5.775266s
0   1   0   1    22.063392s
0   1   1   0    5.265739s
0   1   1   1    24.203251s
1   0   0   0    1.031684s
1   0   0   1    28.244678s
1   0   1   0    1.031888s
1   0   1   1    29.540660s
1   1   0   0    1.032883s
1   1   0   1    29.408005s
1   1   1   0    1.035110s
1   1   1   1    28.948555s

既存のファイルを使用した結果 (明らかに、last_byte のケースはここでは関係ありません。また、最初の結果でもファイルを作成する必要がありました):

mmap    direct  last    sync    time
0   0   0   0    1.199310s
0   0   0   1    7.858803s
0   0   1   0    0.184925s
0   0   1   1    8.320572s
0   1   0   0    4.047780s
0   1   0   1    4.066993s
0   1   1   0    4.042564s
0   1   1   1    4.307159s
1   0   0   0    3.596712s
1   0   0   1    8.284428s
1   0   1   0    0.242584s
1   0   1   1    8.070947s
1   1   0   0    0.240500s
1   1   0   1    8.213450s
1   1   1   0    0.240922s
1   1   1   1    8.265024s

(25,000 チャンクではなく 10,000 チャンクのみを使用したことに注意してください。したがって、これは ext2 ファイルシステムを使用して 320MB しか書き込みません。より大きな ext2fs は手元にありませんでした。より大きな fs は XFS であり、mmap+direct I/O を許可することを拒否しました)。 .)

興味があるなら、ここにコードがあります:

#define _GNU_SOURCE 1

#include <malloc.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

#define USE_MMAP    8
#define USE_DIRECT  4
#define USE_LAST    2
#define USE_SYNC    1

#define PAGE    4096
#define CHUNK   (8*PAGE)
#define NCHUNKS 10000
#define STATI   1000

#define FSIZE   (NCHUNKS*CHUNK)

main()
{
    int i, j, fd, rc, stc;
    char *data = valloc(CHUNK);
    char *map, *dst;
    char sfname[8];
    struct timeval start, end, stats[NCHUNKS/STATI+1];
    FILE *sfile;

    printf("mmap\tdirect\tlast\tsync\ttime\n");
    for (i=0; i<16; i++) {
        int oflag = O_CREAT|O_RDWR|O_TRUNC;

        if (i & USE_DIRECT)
            oflag |= O_DIRECT;
        fd = open("dummy", oflag, 0666);
        ftruncate(fd, FSIZE);
        if (i & USE_LAST) {
            lseek(fd, 0, SEEK_END);
            write(fd, data, 1);
            lseek(fd, 0, SEEK_SET);
        }
        if (i & USE_MMAP) {
            map = mmap(NULL, FSIZE, PROT_WRITE, MAP_SHARED, fd, 0);
            if (map == (char *)-1L) {
                perror("mmap");
                exit(1);
            }
            dst = map;
        }
        sprintf(sfname, "%x.csv", i);
        sfile = fopen(sfname, "w");
        stc = 1;
        printf("%d\t%d\t%d\t%d\t",
            (i&USE_MMAP)!=0, (i&USE_DIRECT)!=0, (i&USE_LAST)!=0, i&USE_SYNC);
        fflush(stdout);
        gettimeofday(&start, NULL);
        stats[0] = start;
        for (j = 1; j<=NCHUNKS; j++) {
            if (i & USE_MMAP) {
                memcpy(dst, data, CHUNK);
                if (i & USE_SYNC)
                    msync(dst, CHUNK, MS_SYNC);
                dst += CHUNK;
            } else {
                write(fd, data, CHUNK);
                if (i & USE_SYNC)
                    fdatasync(fd);
            }
            if (!(j % STATI)) {
                gettimeofday(&end, NULL);
                stats[stc++] = end;
            }
        }
        end.tv_usec -= start.tv_usec;
        if (end.tv_usec < 0) {
            end.tv_sec--;
            end.tv_usec += 1000000;
        }
        end.tv_sec -= start.tv_sec;
        printf(" %d.%06ds\n", (int)end.tv_sec, (int)end.tv_usec);
        if (i & USE_MMAP)
            munmap(map, FSIZE);
        close(fd);
        for (j=NCHUNKS/STATI; j>0; j--) {
            stats[j].tv_usec -= stats[j-1].tv_usec;
            if (stats[j].tv_usec < 0) {
                stats[j].tv_sec--;
                stats[j].tv_usec+= 1000000;
            }
            stats[j].tv_sec -= stats[j-1].tv_sec;
        }
        for (j=1; j<=NCHUNKS/STATI; j++)
            fprintf(sfile, "%d\t%d.%06d\n", j*STATI*CHUNK,
                (int)stats[j].tv_sec, (int)stats[j].tv_usec);
        fclose(sfile);
    }
}
于 2013-08-25T13:55:28.737 に答える
2

これは、synctest コードの Windows バージョンです。VirtualBox vm 内でのみ実行したため、比較に役立つ数値はないと思いますが、マシン上の C# の数値と比較してみることができます。CreateFile に OPEN_ALWAYS を渡しているので、既存のファイルを再利用します。毎回空のファイルで再度テストする場合は、そのフラグを CREATE_ALWAYS に変更します。

私が気づいたことの 1 つは、このプログラムを初めて実行したときの結果がはるかに高速だったことです。おそらく、NTFS は既存のデータを上書きするのにあまり効率的ではなく、その後の実行でファイルの断片化の影響が現れました。

#include <windows.h>
#include <stdio.h>

#define USE_MMAP    8
#define USE_DIRECT  4
#define USE_LAST    2
#define USE_SYNC    1

#define PAGE    4096
#define CHUNK   (8*PAGE)
#define NCHUNKS 10000
#define STATI   1000

#define FSIZE   (NCHUNKS*CHUNK)

static LARGE_INTEGER cFreq;

int gettimeofday(struct timeval *tv, void *unused)
{
    LARGE_INTEGER count;
    if (!cFreq.QuadPart) {
        QueryPerformanceFrequency(&cFreq);
    }
    QueryPerformanceCounter(&count);
    tv->tv_sec = count.QuadPart / cFreq.QuadPart;
    count.QuadPart %= cFreq.QuadPart;
    count.QuadPart *= 1000000;
    tv->tv_usec = count.QuadPart / cFreq.QuadPart;
    return 0;
}

main()
{
    int i, j, rc, stc;
    HANDLE fd;
    char *data = _aligned_malloc(CHUNK, PAGE);
    char *map, *dst;
    char sfname[8];
    struct timeval start, end, stats[NCHUNKS/STATI+1];
    FILE *sfile;
    DWORD len;

    printf("mmap\tdirect\tlast\tsync\ttime\n");
    for (i=0; i<16; i++) {
        int oflag = FILE_ATTRIBUTE_NORMAL;

        if (i & USE_DIRECT)
            oflag |= FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH;
        fd = CreateFile("dummy", GENERIC_READ|GENERIC_WRITE, 0, NULL,
            OPEN_ALWAYS, oflag, NULL);
        SetFilePointer(fd, FSIZE, NULL, FILE_BEGIN);
        SetEndOfFile(fd);
        if (i & USE_LAST)
            WriteFile(fd, data, 1, &len, NULL);
        SetFilePointer(fd, 0, NULL, FILE_BEGIN);
        if (i & USE_MMAP) {
            HANDLE mh;
            mh = CreateFileMapping(fd, NULL, PAGE_READWRITE,
                0, FSIZE, NULL);
            map = MapViewOfFile(mh, FILE_MAP_WRITE, 0, 0,
                FSIZE);
            CloseHandle(mh);
            dst = map;
        }
        sprintf(sfname, "%x.csv", i);
        sfile = fopen(sfname, "w");
        stc = 1;
        printf("%d\t%d\t%d\t%d\t",
            (i&USE_MMAP)!=0, (i&USE_DIRECT)!=0, (i&USE_LAST)!=0, i&USE_SYNC);
        fflush(stdout);
        gettimeofday(&start, NULL);
        stats[0] = start;
        for (j = 1; j<=NCHUNKS; j++) {
            if (i & USE_MMAP) {
                memcpy(dst, data, CHUNK);
                FlushViewOfFile(dst, CHUNK);
                dst += CHUNK;
            } else {
                WriteFile(fd, data, CHUNK, &len, NULL);
            }
            if (i & USE_SYNC)
                FlushFileBuffers(fd);
            if (!(j % STATI)) {
                gettimeofday(&end, NULL);
                stats[stc++] = end;
            }
        }
        end.tv_usec -= start.tv_usec;
        if (end.tv_usec < 0) {
            end.tv_sec--;
            end.tv_usec += 1000000;
        }
        end.tv_sec -= start.tv_sec;
        printf(" %d.%06ds\n", (int)end.tv_sec, (int)end.tv_usec);
        if (i & USE_MMAP)
            UnmapViewOfFile(map);
        CloseHandle(fd);
        for (j=NCHUNKS/STATI; j>0; j--) {
            stats[j].tv_usec -= stats[j-1].tv_usec;
            if (stats[j].tv_usec < 0) {
                stats[j].tv_sec--;
                stats[j].tv_usec+= 1000000;
            }
            stats[j].tv_sec -= stats[j-1].tv_sec;
        }
        for (j=1; j<=NCHUNKS/STATI; j++)
            fprintf(sfile, "%d\t%d.%06d\n", j*STATI*CHUNK,
                (int)stats[j].tv_sec, (int)stats[j].tv_usec);
        fclose(sfile);
    }
}
于 2013-08-25T20:27:08.403 に答える
0

[違う; コメントを参照してください。]

あなたが参照している記事は、FlushFileBuffers がバッファリングされていない I/O に有効な効果があると述べている点で間違っていると思います。マイクロソフトの論文に言及していますが、問題の論文はそのような主張をしていません。

ドキュメントによると、バッファリングされていない I/O を使用すると、書き込みのたびに FlushFileBuffer を呼び出すのと同じ効果がありますが、より効率的です。したがって、実用的な解決策は、FlushFileBuffer を使用するのではなく、バッファリングされていない I/O を使用することです。

ただし、メモリ マップ ファイルを使用すると、バッファリング設定が無効になることに注意してください。できるだけ早くデータをディスクにプッシュしようとしている場合は、メモリ マップ ファイルを使用することはお勧めしません。

于 2013-08-22T21:56:51.897 に答える