1

Haskell で古典的な RK4 アルゴリズムを実装して結合 ODE のシステムを解き、単純な振り子をサンプル システムとして使用しようとしています。残念ながら、次のエラーを修正できませんでした。

Pendulum.hs:43:27:
    No instance for (Num [Double]) arising from a use of `rk4'
    Possible fix: add an instance declaration for (Num [Double])
    In the first argument of `iterate', namely `(rk4 fs h)'
    In the expression: iterate (rk4 fs h) initial
    In an equation for `result': result = iterate (rk4 fs h) initial
Failed, modules loaded: none.

Haskell が rk4 のタイプを推測した場所

rk4  :: (Fractional b, Num [b]) => [[b] -> [b] -> b] -> b -> [[b]] -> [[b]]

ソースコード

module Pendulum where
import Data.List

{-
  The simple pendulum

  This is system which obeys the following equation.

  $ \frac{d^2 \theta}{dt^2} + \frac{g}{L}\theta = 0 $

  where g is the acceleration due to gravity, L the length of the pendulum and theta
  the angular displacement of the pendulum

  By observation you could see thar for small angles the solution for simple harmonic osscilator could be used,
  but for large angles a numerical solution is required.

  This simulation uses the Runge Kutta 4th Order Method to solve the ODE.

-}

data PhysicalParam = PhysicalParam { pMass   :: Double -- kg   Pendulum mass
                                   , pLength :: Double -- m    Pendulum length
                                   }
data PendulumState = PendulumState { omega   :: Double -- rad/s Angular Velocity
                                   , theta   :: Double -- rad   Angular Displacement
                                   , time    :: Double -- s     Time
                                   }
type Time = Double
type TIncrement = Double

list2State :: [[Double]] -> PendulumState
list2State [xs, ys]  = PendulumState { theta = (ys !! 0)
                                     , omega = (ys !! 1)
                                     , time  = (xs !! 0)
                                     }

state2List :: PendulumState -> [[Double]]
state2List state = [[time state],[theta state, omega state ]]


--pendulum :: PhysicalParam -> PendulumState -> Time -> TIncrement -> [PendulumState]
pendulum physicalParam initState time dt = result -- map list2State result
  where result = iterate (rk4 fs h) initial
        omegaDerivative pp state = adg * sin (theta state) / (pLength pp)
        thetaDerivative pp state = omega state
        fs   = [(\xs ys -> omegaDerivative physicalParam (list2State [xs, ys]))
               ,(\xs ys -> thetaDerivative physicalParam (list2State [xs, ys]))
               ]
        initial  = state2List initState
        h   = dt
        adg = 9.81 -- m/s

--rk4 :: Floating a => [ [a] -> [a] -> a ] -> a -> [[a]] -> [[a]]
rk4 fs h [xs, ys] = [xs', ys']
  where xs' = map (+h) xs
        ys' = ys + map (*(h/6.0)) (k1 + (map (*2.0) k2) + (map (*2.0) k3) + k4)
          where k1 = [f (xs)              (ys)                     | f <- fs]
                k2 = [f (map (+0.5*h) xs) (ys + map (*(0.5*h)) k1) | f <- fs]
                k3 = [f (map (+0.5*h) xs) (ys + map (*(0.5*h)) k2) | f <- fs]
                k4 = [f (map (+1.0*h) xs) (ys + map (*(1.0*h)) k3) | f <- fs]

physParam = PhysicalParam { pMass = 1.0, pLength = 0.1 }

-- Initial Conditions
initState = PendulumState { omega = 1.0, theta   = 1.0, time = 0.0 }

dt = 1.0/100   -- time increment
simTime = 30.0 -- simulation time

simulatedStates = pendulum physParam initState simTime dt
4

1 に答える 1