分布をプロットしようとしています:
これは、上半球が T=1 に保持され、下半球が T=0 に保持されている半径 (a) の球の内部の温度分布であり (2 つの半球間の境界での不連続性は無視してください)、P_l はルジャンドル多項式です。最初の種類の。
import pylab as pl
from scipy.special import eval_legendre as Leg
import math,sys
def sumTerm(a,r,theta,l):
"""
Compute term of sum given radius of sphere (a),
y and z coordinates, and the current index of the
Legendre polynomials (l) over the entire range
where these polynomials are orthogonal [-1,1].
"""
xRange = pl.arange(-0.99,1.0,0.01)
x = pl.cos(theta)
# correct for scipy handling negative indices incorrectly
lLow = l-1
lHigh = l+1
if lLow < 0:
lLow = -lLow-1
return 0.5*((r/a)**l)*Leg(l,x)*(Leg(lLow,0)-Leg(lHigh,0))
def main():
n = 10 # number of l terms to expand to
a = 1.0 # radius of sphere
# generate r, theta values
aBins = pl.linspace(0, 2*pl.pi, 360) # 0 to 360 in steps of 360/N.
rBins = pl.linspace(0, 1, 50)
theta,r = pl.meshgrid(aBins, rBins)
tempProfile = pl.zeros([50,360])
for nr,ri in enumerate(rBins):
for nt,ti in enumerate(aBins):
temp = 0.0
for l in range(n):
temp += sumTerm(a, ri, ti, l)
tempProfile[nr,nt] = temp
# plot the Temperature profile
pl.imshow(tempProfile)
pl.colorbar()
pl.axes().set_aspect('equal')
pl.show()
if __name__=='__main__':
main()
これにより、次のプロットが得られます。
これは良さそうに見えますが、これを極座標で表示するにはどうすればよいですか?