6

使用しています: Ubuntu 12.04 64 ビット、R 3.0.2、RStudio 0.98.312、knitr 1.5、マークダウン 0.6.3、mgcv1.​​7-27

複数のコード チャンクを含む Rmarkdown ドキュメントがあります。1 つのチャンクの途中に、GAM を当てはめ、当てはめを要約し、当てはめをプロットするコードがいくつかあります。問題は、最初のプロットは出力ファイルにレンダリングされますが、2 番目のプロットはレンダリングされないことです。以下は、チャンクのサニタイズされたコード フラグメントです。

fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit) # look at non-missing only
plot(fit)

fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit)

mean(y[is.na(x)]) - mean(y[!is.na(x)])

出力が 2 番目の plot ステートメントのエコーから次の手段の計算のエコーに直接移行することを除いて、すべてが期待どおりにレンダリングされます。平均計算の結果は正しく表示されます。

チャンクの 7 行後に別のプロット呼び出しをコメント アウトすると、不足しているプロットが正しくレンダリングされます。

ここで何が起こっているかについて何か提案はありますか?

以下の更新

要約 - プロット 2 の呼び出しの数行後に実行エラー (変数が見つからない) を生成する R コードがあり、その数行後にプロット 3 の呼び出しがあります。コード エラーが修正されると、プロット 2 がレンダリングされます。コード エラーが修正されておらず、Plot 3 の呼び出しがコメント アウトされている場合、Plot 2 がレンダリングされます。問題は、異なるフィットの結果を格納するために使用されている同じ変数「フィット」に依存します。各フィットを異なる変数に割り当てると、プロット 2 は正常にレンダリングされます。

正常に実行されたコードの複数行の後に加えられた変更が、(どうやら遡及的に) プロット 2 のレンダリングを妨げる可能性があることを理解していません。

再現可能な例:

Some text.

```{r setup}
require(mgcv)

mkdata <- function(n=100) {
  x <- rnorm(n) + 5
  y <- x + 0.3 * rnorm(n)
  x[sample(ceiling(n/2), ceiling(n/10))] <- NA
  x <- x^2
  data.frame(x, y)  
} 
```

Example 1
=========

Plot 2 fails to render. (Using the same fit object for each fit.)

```{r example_1}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)

fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1

fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2

mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation

# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()

attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0) # doesn't run because of error in recode
summary(fit) # this is actually fit 2
plot(fit) # plot 3 (this is actually fit 2)
detach()
```

Example 2
=========

Use separate fit objects for each fit. Plot 2 renders OK.

```{r example_2}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)

fit1 <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit1)
plot(fit1) # plot 1

fit2 <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit2)
plot(fit2) #plot 2

mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation

# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()

attach(j0)
fit3 <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0) # doesn't run because of error in recode
summary(fit3)
plot(fit3) # plot 3
detach()
```

Example 3
=========

Revert to using the same fit object for each fit. Plot 2 renders because plot 3 is commented out.

```{r example_3}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)

fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1

fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2

mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation

# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()

attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0)
summary(fit) # this is actually fit 2
# plot(fit) # plot 3 (this is actually fit 2)
detach()
```

Example 4
=========

Plot 2 renders because later recode error is fixed.

```{r example_4}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)

fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1

fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2

mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation

# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(j0$x.na, mx, x) # error in recode fixed
detach()

attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0)
summary(fit)
plot(fit) # plot 3
detach()
```

ログファイル:

> require(knitr); knit('reproduce.Rmd', encoding='UTF-8');
Loading required package: knitr


processing file: reproduce.Rmd
  |......                                                           |   9%
  ordinary text without R code

  |............                                                     |  18%
label: setup
  |..................                                               |  27%
  ordinary text without R code

  |........................                                         |  36%
label: example_1
  |..............................                                   |  45%
  ordinary text without R code

  |...................................                              |  55%
label: example_2
  |.........................................                        |  64%
  ordinary text without R code

  |...............................................                  |  73%
label: example_3
  |.....................................................            |  82%
  ordinary text without R code

  |...........................................................      |  91%
label: example_4
  |.................................................................| 100%
  ordinary text without R code


output file: reproduce.md

[1] "reproduce.md"
4

1 に答える 1