6

先日、何かをどこまで最適化できるか試して遊んでいました。要素が存在するかどうかを線形検索するだけの単純なマップから始めて、そのほとんどを最適化することにしました。また、比較するために、std::map と std::vector で std::find を使用して同じことを行います。

マップの結果は予想どおりで、私のマップよりも作成と破壊が遅くなりますが、はるかに高速です (実際には、測定できませんでした。常に 0 を返します)。問題は std::vector にあります。私の実装よりも遅いと思っていましたが、そうではありません。私の実装は最悪のケースをスキップしているため(値がベクトルにない)、どうすれば同じまたは高速になるのか本当にわかりません。結果のキャッシュを使用します。

誰かがここで光を当てることができますか? stl の背後にいる連中が半神であることは知っていますが、それでも、これは意味がありません。

ベンチマーク結果 (i3、Windows 8.1 Pro 64、Visual Studio 2013):

std::vector :
    Build : 85.0042 ms
    Loop : 37.0011 ms
    Find : 1.82259 ms  -> First : Found, Second : Found, Third : Not Found
    Release : 0 ms
--------------------
std::map :
    Build : 6929.41 ms
    Loop : 570.032 ms
    Find : 0 ms  -> First : Found, Second : Found, Third : Not Found
    Release : 1425.08
--------------------
Linear Map V0:
    Build : 194.012 ms
    Loop : 49.0052 ms
    Find : 1.88915 ms -> First : Found, Second : Found, Third : Not Found
    Release : 109.004

マップのコードは次のとおりです。

template<typename T>
class LinearMap0
{
public:
LinearMap0()
{
    _end = _root = new Node;
    _prebuffer = nullptr;
    prebufferCapacity = 0;
    _alive = true;
    prebufferMarker = 0;
    _cache = _mm_set1_epi32(-1);
    for (auto& ptr : _cacheBuffer) ptr = nullptr;
    MinID = INT32_MAX - 1;
    MaxID = -1;
}
void PreAllocate(int Count)
{
    prebufferCapacity = Count;
    _prebuffer = new Node[Count];
}
~LinearMap0()
{
    if (_alive)
    {
        Release();
    }
}
void Release()
{
    Node* marker = _end;
    while (marker->Prev)
    {
        marker = marker->Prev;
        if (!marker->Next->IsPreAllocated) delete marker->Next;
    }

    if (!_root->IsPreAllocated) delete _root;
    delete[] _prebuffer;

    _alive = false;
}

void AddElement(int ID,T element)
{
    Node* tmp = nullptr;
    if (prebufferMarker < prebufferCapacity)
    {
        // Use a pre-allocated object
        tmp = &_prebuffer[prebufferMarker];
        prebufferMarker++;
        tmp->IsPreAllocated = true;
    }
    else
    {
        tmp = new Node;
    }

    tmp->ID = ID;
    tmp->Data = element;

    // Update list
    _end->Next = tmp;
    Node* prevEnd = _end;
    _end = tmp;
    _end->Prev = prevEnd;
    bool isMin = ID < MinID; MinID = ID * isMin + (1 - isMin) * MinID;
    bool isMax = ID > MaxID; MaxID = ID * isMax + (1 - isMax) * MaxID;
}
void DeleteLast()
{
    Node* tmp = _end;

    _end = _end->Prev;
    _end->Next = nullptr;

    delete tmp;
}

template<class Function>
void Loop(Function&& f, bool Forward = true)
{
    if (Forward)
    {
        Node* marker = _root;
        while (marker->Next)
        {
            marker = marker->Next;
            f(marker->Data);
        }
    }
    else
    {
        Node* marker = _end;
        while (marker->Prev)
        {
            marker = marker->Prev;
            f(marker->Data);
        }
    }
}

T* Find(int ID)
{
    // Bounds check
    if (ID < MinID || ID > MaxID) return nullptr;

    // Check it it's in the cache

    // Compare the value to every value in the cache
    __m128i idxSSE = _mm_set1_epi32(ID);
    __m128i C = _mm_cmpeq_epi32(_cache, idxSSE);

    // To change form -1 to 1
    C = _mm_mul_epi32(C, _mm_set1_epi32(-1));

    // Now C holds 1 if true, or 0 if false (in each of its 4 members). It should only be ONE set at 1
    __m128i tmp = _mm_set1_epi32(1);
    __m128i S = _mm_sub_epi32(tmp, C);

    // Now find the index
    int i = S.m128i_i32[0] * (C.m128i_i32[1] + S.m128i_i32[1] * (2 * C.m128i_i32[2] + S.m128i_i32[2] * (3 * C.m128i_i32[3] + S.m128i_i32[3] * -1)));

    if (i != -1)
        return _cacheBuffer[i];

    // Traverse the list
    Node* marker0 = _root;
    T* obj = nullptr;

    while (true)
    {
        if (marker0->ID == ID)
        {
            obj = &marker0->Data;
        }

        if (marker0->Next) marker0 = marker0->Next; else break;
    }

    // Cache value and return
    _cache.m128i_i32[cacheMarker] = ID;
    _cacheBuffer[cacheMarker] = obj;
    cacheMarker = (cacheMarker + 1) & 3; // x & 3 = x % 4

    return obj;
}
private:
struct Node
{
    Node()
    {
        Prev = nullptr;
        Next = nullptr;
        IsPreAllocated = false;
        ID = -1;
    }
    T Data;
    Node* Prev;
    Node* Next;
    bool IsPreAllocated;
    int ID;
};

Node* _root;
Node* _end;

Node* _prebuffer;
int prebufferCapacity;
int prebufferMarker;

bool _alive;

__m128i _cache;
T* _cacheBuffer[4];
int cacheMarker;
int MinID, MaxID;
};

そして、これがベンチマークです:

// Initialize seeds
const __int64 ecount = 5 * 1000*1000;
vector<__int64> seed(ecount);
for (__int64 i = 0; i < ecount; i++)
{
    seed[i] = i;
}
random_shuffle(seed.begin(), seed.end());

///////////// std::vector

vector<__int64> v;

cout << "--------------------" << endl;
cout << "std::vector :" << endl;
cout << "   Build : " << time_call([&]()
{
    v.resize(ecount/2);
    for (__int64 i = 0; i < ecount; i++)
    {
        if (i < (ecount / 2))
            v[i] = seed[i];
        else
            v.push_back(seed[i]);
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    for (auto& n : v)
        n /= 2;
}) << " ms" << endl;

bool found1, found2, found3;
cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = find(v.begin(), v.end(), seed[5] / 2) != v.end();//find(seed[5]) != m.end();
        found2 = find(v.begin(), v.end(), seed[1000] / 2) != v.end();

        // Shouldn't exist
        found3 = find(v.begin(), v.end(), -1234) != v.end();
    }
})) / 15.0) / 3.0;
cout << " ms " << " -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    v.clear();
}) << " ms" << endl;

///////////// std::map

map<__int64, __int64> m;

cout << "--------------------" << endl;
cout << "std::map :" << endl;
cout << "   Build : " << time_call([&]()
{
    for (__int64 i = 0; i < ecount; i++)
    {
        m[seed[i]] = seed[i];
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    for (auto& n : m)
        n.second /= 2;
}) << " ms" << endl;

cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = m.find(seed[5]) != m.end();
        found2 = m.find(seed[1000]) != m.end();

        // Shouldn't exist
        found3 = m.find(-1234) != m.end();
    }
})) / 15.0) / 3.0;
cout << " ms " << " -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    m.clear();
}) << endl;

///////////// Linear Map V0

LinearMap0<__int64> c;

cout << "--------------------" << endl;
cout << "Linear Map V0:" << endl;
cout << "   Build : " << time_call([&]()
{
    c.PreAllocate(ecount / 2);
    for (__int64 i = 0; i < ecount; i++)
    {
        c.AddElement(seed[i],seed[i]);
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    c.Loop([](__int64& Data)
    {
        Data /= 2;
    });
}) << " ms" << endl;

cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = c.Find(seed[5]);
        found2 = c.Find(seed[1000]);

        // Shouldn't exist
        found3 = c.Find(-1234);
    }
})) / 15.0) / 3.0;
cout << " ms -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    c.Release();
}) << endl;

編集: time_call は:

template <class Function>
double time_call(Function&& f)
{
    chrono::time_point<chrono::high_resolution_clock> start, end;
    start = chrono::high_resolution_clock::now();
        f();
    end = chrono::high_resolution_clock::now();

    return ((double)(chrono::duration_cast<chrono::nanoseconds>(end - start).count())) / 1000000.0;
}
4

2 に答える 2

12

コンテナーはリンクされたリストstd::vectorですが、動的にサイズ変更される配列です。

リンクされたリストのアプローチには、再割り当てなしで要素を挿入できるなどの利点があります。

ただし、配列アプローチにはいくつかの重要な利点があります。

  • 線形検索はメモリをスキャンするだけであり、キャッシュとプリフェッチャーはまさにそのために構築されています。リンクされたリストのスキャンは、キャッシュされていないメモリへの各ジャンプが高価なキャッシュ ミスを意味するため、効率が低下します。
  • 線形配列スキャンは簡単にベクトル化できます。でコンパイルすると-O3、コンパイラはベクトル化されたバージョンの を使用する可能性がありstd::findます。メモリ依存性のため、リンク リスト スキャンをベクトル化することはできません。
  • メモリの使用量。リンクされたリストはnext、要素を効果的に大きくするポインターを維持する必要があります。また、事前に割り当てられていないそれぞれは、アロケータのオーバーヘッド (つまり、とNodeのアカウンティング データ) を支払わなければなりません。つまり、メモリ帯域幅の制限に早く到達し、キャッシュに収まる要素の数を減らすことができます。newdelete
于 2013-11-14T19:00:31.123 に答える
1

std vector のすべての利点は、要素が密集していることです (メモリ内の要素 1 は要素 0 の直後など)。これは、メモリの読み取りがはるかに予測可能であるため、CPU にとって大きな利点です。ヒープにノードが割り当てられている場合、CPU はメモリをフェッチするために狂ったように前後にジャンプする必要があります。

このスレッドをチェックしてください。

于 2013-11-14T18:58:35.303 に答える