乗算はS
、V
SVD/LSA で次元削減を実行するために必要なことです。
>>> C = np.array([[1, 0, 1, 0, 0, 0],
... [0, 1, 0, 0, 0, 0],
... [1, 1, 0, 0, 0, 0],
... [1, 0, 0, 1, 1, 0],
... [0, 0, 0, 1, 0, 1]])
>>> from scipy.linalg import svd
>>> U, s, VT = svd(C, full_matrices=False)
>>> s[2:] = 0
>>> np.dot(np.diag(s), VT)
array([[ 1.61889806, 0.60487661, 0.44034748, 0.96569316, 0.70302032,
0.26267284],
[-0.45671719, -0.84256593, -0.29617436, 0.99731918, 0.35057241,
0.64674677],
[ 0. , 0. , 0. , 0. , 0. ,
0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. ]])
これにより、最後の数行を除くすべてがゼロである行列が得られるため、それらを削除できます。実際には、これはアプリケーションで使用する行列です。
>>> np.dot(np.diag(s[:2]), VT[:2])
array([[ 1.61889806, 0.60487661, 0.44034748, 0.96569316, 0.70302032,
0.26267284],
[-0.45671719, -0.84256593, -0.29617436, 0.99731918, 0.35057241,
0.64674677]])
PDF の 10 ページに記載されているのは、入力の低ランク再構成C
を取得するためのレシピです。ランク!= 次元、および再構成行列のせん断サイズと密度により、LSA での使用は実用的ではありません。その目的は主に数学的なものです。それを使ってできることの 1 つは、 のさまざまな値に対して再構成がどの程度優れているかを確認することですk
。
>>> U, s, VT = svd(C, full_matrices=False)
>>> C2 = np.dot(U[:, :2], np.dot(np.diag(s[:2]), VT[:2]))
>>> from scipy.spatial.distance import euclidean
>>> euclidean(C2.ravel(), C.ravel()) # Frobenius norm of C2 - C
1.6677932876555255
>>> C3 = np.dot(U[:, :3], np.dot(np.diag(s[:3]), VT[:3]))
>>> euclidean(C3.ravel(), C.ravel())
1.0747879905228703
scikit-learn に対するサニティ チェックTruncatedSVD
(完全な開示: 私はそれを書きました):
>>> from sklearn.decomposition import TruncatedSVD
>>> TruncatedSVD(n_components=2).fit_transform(C.T)
array([[ 1.61889806, -0.45671719],
[ 0.60487661, -0.84256593],
[ 0.44034748, -0.29617436],
[ 0.96569316, 0.99731918],
[ 0.70302032, 0.35057241],
[ 0.26267284, 0.64674677]])