こんにちは、7 セグメント ディスプレイ割り当てからの最初の式を単純化する必要があります。大文字は NOT であることを意味するため、たとえば最初の部分 ZYXW は、NOT z AND NOT y AND NOT x AND NOT w を意味します。それが理にかなっていることを願っています。
したがって、問題は、a = z + x + yw + YW に単純化する式の答えを見つけたことですが、私の単純化は a = zYX で終了します。
以下は私の単純化の手順です。誰かが問題を特定してください。
a = ZYXW + ZYxW + ZYxw + ZyXw + ZyxW + Zyxw + zYXw + zYXW
a = ZYXW + ZYxW + ZYxw + ZyXw + ZyxW + Zyxw + zYX(w + W)
a = ZYXW + ZYxW + ZYxw + ZyXw + ZyxW + Zyxw + zYX(1)
a = ZYXW + ZYxW + ZYxw + ZyXw + ZyxW + Zyxw + zYX.1
a = ZYXW + ZYxW + ZYxw + ZyXw + ZyxW + Zyxw + zYX
a = ZYXW + ZYxW + ZYxw + ZyXw + Zyx(W + w) + zYX
a = ZYXW + ZYxW + ZYxw + ZyXw + Zyx(1) + zYX
a = ZYXW + ZYxW + ZYxw + ZyXw + Zyx.1 + zYX
a = ZYXW + ZYxW + ZYxw + ZyXw + Zyx + zYX
a = ZYW(X + x) + ZYxw + ZyXw + Zyx + zYX
a = ZYW(1) + ZYxw + ZyXw + Zyx + zYX
a = ZYW.1 + ZYxw + ZyXw + Zyx + zYX
a = ZYW + ZYxw + ZyXw + Zyx + zYX
a = ZYW + Zw(xY + Xy) + Zyx + zYX
a = ZYW + Zw(x.1 + X.1) + Zyx + zYX
a = ZYW + Zw(x + X) + Zyx + zYX
a = ZYW + Zw(1) + Zyx + zYX
a = ZYW + Zw.1 + Zyx + zYX
a = ZYW + Zw + Zyx + zYX
a = Z(YW + w + yz) + zYX
a = Z(Y.1 + yz) + zYX
a = Z(Y = yz) + zYX
a = Z(z) + zYX
a = Z + z + zYX
a = 1 + zYX
a = zYX