0

どうやって:

    1 +   2 + ... + N-1 +   N
 +  N + N-1 + ... +   2 +   1
  ---------------------------
 N+1 + N+1 + ... + N+1 + N+1

等しい N(N + 1)? 4N+4とか4(N+1)じゃないの?

4

4 に答える 4

9

N(N+1)です。

N 個の (N+1) 項があるためです。

于 2010-01-22T06:47:58.250 に答える
4

4ならN確かに。それ以外の場合は、省略記号が表す残りの省略された値を入力する必要があります。

于 2010-01-22T06:47:55.633 に答える
3

私はあなたの表記が行1 +行2 =行3を意味すると思いますか?

この場合、列を見てください。最初の 2 行の各列の合計は n+1 になります。n 列あります。したがって、行 1 + 行 2 = n*(n+1)

于 2010-01-22T06:49:53.220 に答える
2

カール・フリードリヒ・ガウスの初期についての部分を読むここ. 彼は小学生の時、ほぼ同じ問題を解いた。

于 2010-01-22T06:50:47.397 に答える