I have tried to implement the following algorithm but the resulting image looks the same.
Step 1: Read Noisy Image.
Step 2: Select 2D window of size 3x3 with centre element as processing pixel. Assume that the pixel being processed is P ij .
Step 3: If P ij is an uncorrupted pixel (that is, 0< P ij <255), then its value is left unchanged.
Step 4: If P ij = 0 or P ij = 255, then P ij is a corrupted pixel.
Step 5: If 3/4 th or more pixels in selected window are noisy then increase window size to 5x5. Step 6: If all the elements in the selected window are 0‟s and 255‟s, then replace P ij with the mean of the elements in the window else go to step 7.
Step 7: Eliminate 0‟s and 255‟s from the selected window and find the median value of the remaining elements. Replace Pij with the median value.
Step 8: Repeat steps 2 to 6 until all the pixels in the entire image are processed.
Here is my code. Please suggest improvements.
import Image
im=Image.open("no.jpg")
im = im.convert('L')
for i in range(2,im.size[0]-2):
for j in range(2,im.size[1]-2):
b=[]
if im.getpixel((i,j))>0 and im.getpixel((i,j))<255:
pass
elif im.getpixel((i,j))==0 or im.getpixel((i,j))==255:
c=0
for p in range(i-1,i+2):
for q in range(j-1,j+2):
if im.getpixel((p,q))==0 or im.getpixel((p,q))==255:
c=c+1
if c>6:
c=0
for p in range(i-2,i+3):
for q in range(j-2,j+3):
b.append(im.getpixel((p,q)))
if im.getpixel((p,q))==0 or im.getpixel((p,q))==255:
c=c+1
if c==25:
a=sum(b)/25
print a
im.putpixel((i,j),a)
else:
p=[]
for t in b:
if t not in (0,255):
p.append(t)
p.sort()
im.putpixel((i,j),p[len(p)/2])
else:
b1=[]
for p in range(i-1,i+2):
for q in range(j-1,j+2):
b1.append(im.getpixel((p,q)))
im.putpixel((i,j),sum(b1)/9)
im.save("nonoise.jpg")