Cross-Validated に質問を投稿することを考えていましたが、ここに来ることにしました。nnet パッケージの multinom() 関数を使用して、雇用、失業、または年齢と教育を条件とする労働力からの確率を推定しています。解釈の助けが必要です。
1 つの従属カテゴリ変数雇用状況 (EmpSt) と 2 つの独立カテゴリ変数、年齢 (Age) と教育レベル (Education) の次のデータセットがあります。
>head(df)
EmpSt Age Education
1 Employed 61+ Less than a high school diploma
2 Employed 50-60 High school graduates, no college
3 Not in labor force 50-60 Less than a high school diploma
4 Employed 30-39 Bachelor's degree or higher
5 Employed 20-29 Some college or associate degree
6 Employed 20-29 Some college or associate degree
レベルの概要は次のとおりです。
>summary(df)
EmpSt Age Education
Not in universe : 0 16-19: 6530 Less than a high school diploma :14686
Employed :61478 20-29:16031 High school graduates, no college:30716
Unemployed : 3940 30-39:16520 Some college or associate degree :28525
Not in labor force:38508 40-49:17403 Bachelor's degree or higher :29999
50-60:20779
61+ :26663
- まず、推定式(モデル)とは
通話の推定式 (モデル) を特定したい
df$EmpSt<-relevel(df$EmpSt,ref="Employed")
multinom(EmpSt ~ Age + Education,data=df)
研究論文に書き留めることができます。私の理解では、Employed は基本レベルであり、この呼び出しのロジット モデルは次のとおりです。
ここで、i と n はそれぞれ変数の年齢と教育のカテゴリです (混乱を招く表記で申し訳ありません)。multinom() によって生成されるロジスティック モデルについての私の理解が間違っている場合は、訂正してください。出力が多いため、テストの概要は含めません。以下に、 call の出力のみを含めます>test
。
> test
Call:
multinom(formula = EmpSt ~ Age + Education, data = ml)
Coefficients:
(Intercept) Age20-29 Age30-39 Age40-49 Age50-60 Age61+
Unemployed -1.334734 -0.3395987 -0.7104361 -0.8848517 -0.9358338 -0.9319822
Not in labor force 1.180028 -1.2531405 -1.6711616 -1.6579095 -1.2579600 0.8197373
EducationHigh school graduates, no college EducationSome college or associate degree
Unemployed -0.4255369 -0.781474
Not in labor force -0.8125016 -1.004423
EducationBachelor's degree or higher
Unemployed -1.351119
Not in labor force -1.580418
Residual Deviance: 137662.6
AIC: 137698.6
multinom() によって生成されたロジット モデルについての私の理解が正しいとすれば、係数はベース レベルが採用されている場合のログ オッズです。実際のオッズを取得するには、実際のオッズを取得する呼び出しexp(coef(test))
でアンチログします。
> exp(coef(test))
(Intercept) Age20-29 Age30-39 Age40-49 Age50-60 Age61+
Unemployed 0.2632281 0.7120560 0.4914298 0.4127754 0.3922587 0.3937724
Not in labor force 3.2544655 0.2856064 0.1880285 0.1905369 0.2842333 2.2699035
EducationHigh school graduates, no college EducationSome college or associate degree
Unemployed 0.6534189 0.4577308
Not in labor force 0.4437466 0.3662560
EducationBachelor's degree or higher
Unemployed 0.2589504
Not in labor force 0.2058891
次の質問に移ります。
- 第二に、確率
年齢と教育の組み合わせに基づいて、失業者と雇用者の実際の確率を取得する方法があるかどうか疑問に思います。長い質問で申し訳ありません。ご協力いただきありがとうございます。追加の説明が必要な場合はお知らせください。