gradient descent
係数の計算について学習しています。以下は私がやっていることです:
#!/usr/bin/Python
import numpy as np
# m denotes the number of examples here, not the number of features
def gradientDescent(x, y, theta, alpha, m, numIterations):
xTrans = x.transpose()
for i in range(0, numIterations):
hypothesis = np.dot(x, theta)
loss = hypothesis - y
# avg cost per example (the 2 in 2*m doesn't really matter here.
# But to be consistent with the gradient, I include it)
cost = np.sum(loss ** 2) / (2 * m)
#print("Iteration %d | Cost: %f" % (i, cost))
# avg gradient per example
gradient = np.dot(xTrans, loss) / m
# update
theta = theta - alpha * gradient
return theta
X = np.array([41.9,43.4,43.9,44.5,47.3,47.5,47.9,50.2,52.8,53.2,56.7,57.0,63.5,65.3,71.1,77.0,77.8])
y = np.array([251.3,251.3,248.3,267.5,273.0,276.5,270.3,274.9,285.0,290.0,297.0,302.5,304.5,309.3,321.7,330.7,349.0])
n = np.max(X.shape)
x = np.vstack([np.ones(n), X]).T
m, n = np.shape(x)
numIterations= 100000
alpha = 0.0005
theta = np.ones(n)
theta = gradientDescent(x, y, theta, alpha, m, numIterations)
print(theta)
今、私の上記のコードは正常に動作します。複数の変数を試して、次のように置き換えX
た場合X1
:
X1 = np.array([[41.9,43.4,43.9,44.5,47.3,47.5,47.9,50.2,52.8,53.2,56.7,57.0,63.5,65.3,71.1,77.0,77.8], [29.1,29.3,29.5,29.7,29.9,30.3,30.5,30.7,30.8,30.9,31.5,31.7,31.9,32.0,32.1,32.5,32.9]])
私のコードは失敗し、次のエラーが表示されます。
JustTestingSGD.py:14: RuntimeWarning: overflow encountered in square
cost = np.sum(loss ** 2) / (2 * m)
JustTestingSGD.py:19: RuntimeWarning: invalid value encountered in subtract
theta = theta - alpha * gradient
[ nan nan nan]
gradient descent
を使用する方法を教えてもらえますX1
か? を使用して期待される出力X1
は次のとおりです。
[-153.5 1.24 12.08]
私は他の Python 実装にもオープンです。coefficients (also called thetas)
forX1
とが欲しいだけですy
。