8

ポイントの 2D グリッドで表されるサーフェスを最適化して、指定されたターゲット法線ベクトルと一致するサーフェスの法線ベクトルを生成する必要があります。グリッド サイズは、201x201 から 1001x1001 の間である可能性があります。つまり、メッシュ ポイントの z 座標のみを変更しているため、変数の数は 40,000 から 1,000,000 になります。

大規模な非線形最適化問題に優れていると思われる Ceres フレームワークを使用しています。MATLAB の fmincon は既に試しましたが、信じられないほどの量のメモリを使用します。小さなメッシュで機能する目的関数を作成しました (3x3 および 31x31 で成功)。ただし、大きなメッシュ サイズ (157x200) でコードをコンパイルしようとすると、次のエラーが表示されます。これは Eigen の制限であると読みました。ただし、Eigen の代わりに LAPACK を使用するように Ceres に指示すると、大きな行列に対して同じエラーが発生します。私はこれらの行を試しました:

options.dense_linear_algebra_library_type = ceres::LAPACK;

options.linear_solver_type = ceres::DENSE_QR;

これらは、3x3 メッシュを使用した出力が示すように、ソルバーに LAPACK と DENSE_QR を使用するように指示します。

Minimizer                        TRUST_REGION

Dense linear algebra library           LAPACK
Trust region strategy     LEVENBERG_MARQUARDT

                                    Given                     Used
Linear solver                        DENSE_QR                 DENSE_QR
Threads                                     1                        1
Linear solver threads                       1                        1

ただし、大きなパラメーターを使用すると、依然として Eigen のエラーが発生します。

とにかく、私は本当にこれでいくつかの助けを使うことができました. Ceres で多数の変数 (> 30,000) を最適化するにはどうすればよいですか? 前もって感謝します

セレスへのリンク: http://ceres-solver.org

Eigen へのリンク: http://eigen.tuxfamily.org/dox/

エラー:

In file included from /usr/include/eigen3/Eigen/Core:254:0,
             from /usr/local/include/ceres/jet.h:165,
             from /usr/local/include/ceres/internal/autodiff.h:145,
             from /usr/local/include/ceres/autodiff_cost_function.h:132,
             from /usr/local/include/ceres/ceres.h:37,
             from /home/ubuntu/code/surfaceopt/surfaceopt.cc:10:
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h: In instantiation of ‘Eigen::internal::plain_array<T, Size, MatrixOrArrayOptions, Alignment>::plain_array()     [with T = double; int Size = 31400; int MatrixOrArrayOptions = 2; int Alignment = 0]’:
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h:117:27:   required from     ‘Eigen::DenseStorage<T, Size, _Rows, _Cols, _Options>::DenseStorage() [with T = double; int Size = 31400; int _Rows = 31400; int _Cols = 1; int _Options = 2]’
/usr/include/eigen3/Eigen/src/Core/PlainObjectBase.h:421:55:   required from ‘Eigen::PlainObjectBase<Derived>::PlainObjectBase() [with Derived = Eigen::Matrix<double, 31400, 1, 2, 31400, 1>]’
/usr/include/eigen3/Eigen/src/Core/Matrix.h:203:41:   required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix() [with _Scalar = double; int _Rows = 31400; int _Cols = 1; int _Options = 2; int _MaxRows = 31400; int _MaxCols = 1]’
/usr/local/include/ceres/jet.h:179:13:   required from ‘ceres::Jet<T, N>::Jet() [with T = double; int N = 31400]’
/usr/local/include/ceres/internal/fixed_array.h:138:10:   required from ‘ceres::internal::FixedArray<T, inline_elements>::FixedArray(ceres::internal::FixedArray<T, inline_elements>::size_type) [with T = ceres::Jet<double, 31400>; long int inline_elements = 0l; ceres::internal::FixedArray<T, inline_elements>::size_type = long unsigned int]’
/usr/local/include/ceres/internal/autodiff.h:233:70:   required from ‘static bool ceres::internal::AutoDiff<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(const Functor&, const T* const*, int, T*, T**) [with Functor = ComputeEint; T = double; int N0 = 31400; int N1 = 0; int N2 = 0; int N3 = 0; int N4 = 0; int N5 = 0; int N6 = 0; int N7 = 0; int N8 = 0; int N9 = 0]’
/usr/local/include/ceres/autodiff_cost_function.h:218:25:   required from ‘bool ceres::AutoDiffCostFunction<CostFunctor, kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Evaluate(const double* const*, double*, double**) const [with CostFunctor = ComputeEint; int kNumResiduals = 1; int N0 = 31400; int N1 = 0; int N2 = 0; int N3 = 0; int N4 = 0; int N5 = 0; int N6 = 0; int N7 = 0; int N8 = 0; int N9 = 0]’
/home/ubuntu/code/surfaceopt/surfaceopt.cc:367:1:   required from here
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h:41:5: error: ‘OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG’ is not a member of ‘Eigen::internal::static_assertion<false>’
 EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
 ^
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h: In instantiation of ‘Eigen::internal::plain_array<T, Size, MatrixOrArrayOptions, 16>::plain_array() [with T = double; int Size = 31400; int MatrixOrArrayOptions = 1]’:
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h:120:59:   required from ‘Eigen::DenseStorage<T, Size, _Rows, _Cols, _Options>::DenseStorage(Eigen::DenseIndex, Eigen::DenseIndex, Eigen::DenseIndex) [with T = double; int Size = 31400; int _Rows = 1; int _Cols = 31400; int _Options = 1; Eigen::DenseIndex = long int]’
/usr/include/eigen3/Eigen/src/Core/PlainObjectBase.h:438:41:   required from ‘Eigen::PlainObjectBase<Derived>::PlainObjectBase(Eigen::PlainObjectBase<Derived>::Index, Eigen::PlainObjectBase<Derived>::Index, Eigen::PlainObjectBase<Derived>::Index) [with Derived = Eigen::Matrix<double, 1, 31400, 1, 1, 31400>; Eigen::PlainObjectBase<Derived>::Index = long int]’
/usr/include/eigen3/Eigen/src/Core/Matrix.h:273:76:   required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Transpose<const Eigen::Matrix<double, 31400, 1, 2, 31400, 1> >; _Scalar = double; int _Rows = 1; int _Cols = 31400; int _Options = 1; int _MaxRows = 1; int _MaxCols = 31400]’
/usr/include/eigen3/Eigen/src/Core/DenseBase.h:367:62:   required from ‘Eigen::DenseBase<Derived>::EvalReturnType Eigen::DenseBase<Derived>::eval() const [with Derived = Eigen::Transpose<const Eigen::Matrix<double, 31400, 1, 2, 31400, 1> >; Eigen::DenseBase<Derived>::EvalReturnType = const Eigen::Matrix<double, 1, 31400, 1, 1, 31400>]’
/usr/include/eigen3/Eigen/src/Core/IO.h:244:69:   required from ‘std::ostream& Eigen::operator<<(std::ostream&, const Eigen::DenseBase<Derived>&) [with Derived = Eigen::Transpose<const Eigen::Matrix<double, 31400, 1, 2, 31400, 1> >; std::ostream = std::basic_ostream<char>]’
/usr/local/include/ceres/jet.h:632:35:   required from ‘std::ostream& ceres::operator<<(std::ostream&, const ceres::Jet<T, N>&) [with T = double; int N = 31400; std::ostream = std::basic_ostream<char>]’
/home/ubuntu/code/surfaceopt/surfaceopt.cc:103:50:   required from ‘bool ComputeEint::operator()(const T*, T*) const [with T = ceres::Jet<double, 31400>]’
/usr/local/include/ceres/internal/variadic_evaluate.h:175:26:   required from ‘static bool ceres::internal::VariadicEvaluate<Functor, T, N0, 0, 0, 0, 0, 0, 0, 0, 0, 0>::Call(const Functor&, const T* const*, T*) [with Functor = ComputeEint; T = ceres::Jet<double, 31400>; int N0 = 31400]’
/usr/local/include/ceres/internal/autodiff.h:283:45:   required from ‘static bool ceres::internal::AutoDiff<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(const Functor&, const T* const*, int, T*, T**) [with Functor = ComputeEint; T = double; int N0 = 31400; int N1 = 0; int N2 = 0; int N3 = 0; int N4 = 0; int N5 = 0; int N6 = 0; int N7 = 0; int N8 = 0; int N9 = 0]’
/usr/local/include/ceres/autodiff_cost_function.h:218:25:   required from ‘bool ceres::AutoDiffCostFunction<CostFunctor, kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Evaluate(const double* const*, double*, double**) const [with CostFunctor = ComputeEint; int kNumResiduals = 1; int N0 = 31400; int N1 = 0; int N2 = 0; int N3 = 0; int N4 = 0; int N5 = 0; int N6 = 0; int N7 = 0; int N8 = 0; int N9 = 0]’
/home/ubuntu/code/surfaceopt/surfaceopt.cc:367:1:   required from here
/usr/include/eigen3/Eigen/src/Core/DenseStorage.h:79:5: error: ‘OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG’ is not a member of ‘Eigen::internal::static_assertion<false>’
 EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
 ^
make[2]: *** [CMakeFiles/surfaceopt.dir/surfaceopt.cc.o] Error 1
make[1]: *** [CMakeFiles/surfaceopt.dir/all] Error 2
make: *** [all] Error 2

私のコードは次のようになります(無関係な資料を取り出すために省略されています):

#define TEXT true
#define VERBOSE false 
#define NV 31400
#define NF 62088
#define NX 157
#define NY 200
#define MAXNB 6

#include <math.h>
#include <ceres/ceres.h>
#include <ceres/rotation.h>
#include "glog/logging.h"
#include <iostream>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <string>

using ceres::AutoDiffCostFunction;
using ceres::CostFunction;
using ceres::Problem;
using ceres::Solver;
using ceres::Solve;
using ceres::CrossProduct;
...

class ComputeEint {

private:
  double XY_ [NV][2];         // X and Y coords
  int C_ [NF][3];             // Connectivity list
  int AF_ [NV][MAXNB];        // List of adjacent faces to each vertex
  double Ntgt_ [NV][3];       // Target normal vectors
  int num_AF_ [NV];           // Number of adjacent faces to each vertex
public:

//Constructor
ComputeEint(double XY[][2], int C[][3], int AF[][MAXNB], double Ntgt[][3], int num_AF[NV]) {

std::copy(&XY[0][0], &XY[0][0]+NV*2,&XY_[0][0]);
...

template <typename T>
bool operator()(const T* const z, T* e) const {
  e[0] = T(0);
  ... 
  //Computes vertex normals for triangulated surface by averaging adjacent face normals
  ...
  e[0] = e[0]/T(NV);
  return true;
  }
};

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);

  double Tp [NV][3];            //Points in mesh
  int    Tc [NF][3];            //Mesh connectivity list
  double Ntgt [NV][3];          //Target normals
  int    AF [NV][MAXNB];        //List of adjacent faces of each vertex
  int    num_AF [NV];           //Number of adjacent faces for each vertex

  int nx = NX;
  int ny = NY;

  //Read Tp, Tc, Ntgt, AF, num_AF from file
  ...
  // Set up XY for cost functor
  double XY [NV][2];
  double z [NV];
  //Copy first two columns of Tp into XY
  Problem problem;

  // Set up the only cost function (also known as residual). This uses
  // auto-differentiation to obtain the derivative (jacobian).
  CostFunction* cost_function =
  new AutoDiffCostFunction<ComputeEint, 1, NV>(new ComputeEint(XY, Tc, AF, Ntgt, num_AF));

  std::cout << "Created cost function" << "\n";
  problem.AddResidualBlock(cost_function, NULL, &z[0]);

  std::cout << "Added residual block" << "\n";

  // Run the solver!
  Solver::Options options;
  options.minimizer_progress_to_stdout = true;
  options.max_num_iterations = 50;
  options.function_tolerance = 1e-4;
  options.dense_linear_algebra_library_type = ceres::LAPACK;
  Solver::Summary summary;
  Solve(options, &problem, &summary);

  std::cout << summary.FullReport() << "\n";

  //Write output of optimization to file
  ...
  return 0;
}
4

3 に答える 3

8

二つのこと

  1. 線形ソルバーとして DENSE_QR を使用しているため、密なヤコビアンが得られます。これは悪い考えです。線形ソルバーを SPARSE_NORMAL_CHOLESKY に変更すると、このサイズの問題を非常に簡単に解決できるはずです。

バージョン 1.9 以前を使用している場合は、SuiteSpare/CXSparse が必要になります。最新のリリース候補または git バージョンを使用する場合、Eigen を使用してスパース線形代数も実行できるはずです。

  1. 問題全体に対して単一のコスト関数を作成しています。これは、スパース性を問題にさらしていないことを意味します。自動微分にはスタック上のデータが含まれるため、これがスタック割り当ての問題を引き起こしています。

画像全体のノイズを除去する denoising.cc など、ceres に同梱されているサンプル コードを見てください。同様のグリッドのような構造があります。

より一般的には、問題の頂点ごとに 1 つの残差ブロックを作成します。

于 2014-10-13T20:32:24.237 に答える
1

この回答は、C++ と Eigen に関する私の経験に完全に基づいています (Ceres はわかりません)。

option.* 行は実行時の動作を制御しているように見えますが、エラー メッセージはコンパイル時エラーです。

私に際立っているエラーの最も関連性の高い部分は次のとおりです。

/usr/include/eigen3/Eigen/src/Core/DenseStorage.h:79:5: エラー: 'OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG' は 'Eigen::internal::static_assertion' のメンバーではありません EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8、OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);

Eigen はスタックに固定サイズの行列を割り当てることがよくありますが、それがここで起こっていることだと思います。扱っているサイズの行列では、ヒープに割り当てる必要があります。Eigen にこれを強制するには、動的サイズの行列を選択してみてください。コンパイル後、見つけたオプションを使用して、Eigen の有無にかかわらず実行できるはずです。

特定のソリューションは、DynamicAutoDiffCostFunctionの代わりに使用しているようですAutoDiffCostFunction。ドキュメントの関連スニペット:

AutoDiffCostFunctionパラメータ ブロックの数とそのサイズがコンパイル時にわかっている必要があります。また、パラメーター ブロックの上限は 10 個です。

http://ceres-solver.org/modeling.html?highlight=dynamic#dynamicautodiffcostfunction

于 2014-10-13T19:45:07.863 に答える