R igraph を使用して、加重 DAG の最長パス計算を実装しました。
私の実装 (以下に示す) は、大きなグラフでは遅いです。高速化するためのヒントをいただければ幸いです。私の実装が最もよく知られている/典型的なアルゴリズムからどれだけ離れているかについての考えも大歓迎です.
ありがとう!
# g is the igraph DAG
# g <- graph.tree(10000, 2, mode="out")
# E(g)$weight <- round(runif(length(E(g))),2) * 50
# Topological sort
tsg <- topological.sort(g)
# Set root path attributes
# Root distance
V(g)[tsg[1]]$rdist <- 0
# Path to root
V(g)[tsg[1]]$rpath <- tsg[1]
# Get longest path from root to every node
for(node in tsg[-1])
{
# Get distance from node's predecessors
w <- E(g)[to(node)]$weight
# Get distance from root to node's predecessors
d <- V(g)[nei(node,mode="in")]$rdist
# Add distances (assuming one-one corr.)
wd <- w+d
# Set node's distance from root to max of added distances
mwd <- max(wd)
V(g)[node]$rdist <- mwd
# Set node's path from root to path of max of added distances
mwdn <- as.vector(V(g)[nei(node,mode="in")])[match(mwd,wd)]
V(g)[node]$rpath <- list(c(unlist(V(g)[mwdn]$rpath), node))
}
# Longest path length is the largest distance from root
lpl <- max(V(g)$rdist)
# Enumerate longest path
lpm <- unlist(V(g)[match(lpl,V(g)$rdist)]$rpath)
V(g)$critical <- 0
g <- set.vertex.attribute(g, name="critical", index=lpm, value=1)