Swift と組み合わせた Metal での複数のカーネル関数の実装に問題があります。
私の目標は、画像に対してブロック単位の DCT 変換を実装することです。DCT は、2 つの行列乗算で実装されます。
J = H * I * H^-1
次のコードは、カーネル関数自体と、swift コードで使用される呼び出しを示しています。各カーネル関数を単独で実行すると動作しますが、最初のカーネル関数から 2 番目の関数に書き込みバッファを渡すことができません。したがって、2 番目の関数は常に 0 だけで満たされたバッファーを返します。
すべての画像入力および出力バッファーは、RGB (各コンポーネントの 16 ビット整数) で 400x400 の大きさです。行列は 8x8 の 16 ビット整数です。
異なるカーネル関数のバッファの読み取りアクセスと書き込みアクセスを同期するために必要な特別なコマンドはありますか? それとも私は何か他のことを間違っていますか?
ご協力いただきありがとうございます
シェーダー.メタル
struct Image3D16{
short data[400][400][3];
};
struct Matrix{
short data[8 * 8];
};
kernel void dct1(device Image3D16 *inputImage [[buffer(0)]],
device Image3D16 *outputImage [[buffer(1)]],
device Matrix *mult [[buffer(2)]],
uint2 gid [[thread_position_in_grid]],
uint2 tid [[thread_position_in_threadgroup]]){
int red = 0, green = 0, blue = 0;
for(int x=0;x<8;x++){
short r = inputImage->data[gid.x-tid.x + x][gid.y][0];
short g = inputImage->data[gid.x-tid.x + x][gid.y][1];
short b = inputImage->data[gid.x-tid.x + x][gid.y][2];
red += r * mult->data[tid.x*8 + x];
green += g * mult->data[tid.x*8 + x];
blue += b * mult->data[tid.x*8 + x];
}
outputImage->data[gid.x][gid.y][0] = red;
outputImage->data[gid.x][gid.y][1] = green;
outputImage->data[gid.x][gid.y][2] = blue;
}
kernel void dct2(device Image3D16 *inputImage [[buffer(0)]],
device Image3D16 *outputImage [[buffer(1)]],
device Matrix *mult [[buffer(2)]],
uint2 gid [[thread_position_in_grid]],
uint2 tid [[thread_position_in_threadgroup]]){
int red = 0, green = 0, blue = 0;
for(int y=0;y<8;y++){
short r = inputImage->data[gid.x][gid.y-tid.y + y][0];
short g = inputImage->data[gid.x][gid.y-tid.y + y][1];
short b = inputImage->data[gid.x][gid.y-tid.y + y][2];
red += r * mult->data[tid.y*8 + y];
green += g * mult->data[tid.y*8 + y];
blue += b * mult->data[tid.y*8 + y];
}
outputImage->data[gid.x][gid.y][0] = red;
outputImage->data[gid.x][gid.y][1] = green;
outputImage->data[gid.x][gid.y][2] = blue;
}
ViewController.swift
...
let commandBuffer = commandQueue.commandBuffer()
let computeEncoder1 = commandBuffer.computeCommandEncoder()
computeEncoder1.setComputePipelineState(computeDCT1)
computeEncoder1.setBuffer(input, offset: 0, atIndex: 0)
computeEncoder1.setBuffer(tmpBuffer3D1, offset: 0, atIndex: 1)
computeEncoder1.setBuffer(dctMatrix1, offset: 0, atIndex: 2)
computeEncoder1.dispatchThreadgroups(blocks, threadsPerThreadgroup: dctSize)
computeEncoder1.endEncoding()
let computeEncoder2 = commandBuffer.computeCommandEncoder()
computeEncoder2.setComputePipelineState(computeDCT2)
computeEncoder2.setBuffer(tmpBuffer3D1, offset: 0, atIndex: 0)
computeEncoder2.setBuffer(output, offset: 0, atIndex: 1)
computeEncoder2.setBuffer(dctMatrix2, offset: 0, atIndex: 2)
computeEncoder2.dispatchThreadgroups(blocks, threadsPerThreadgroup: dctSize)
computeEncoder2.endEncoding()
commandBuffer.commit()
commandBuffer.waitUntilCompleted()